Volume 37 Issue 10
Sep.  2025
Turn off MathJax
Article Contents
Wang Jing, Ouyang Xiaoping, Chen Liang, et al. Effect of area on X-ray response characteristics of vertical NPN detectors[J]. High Power Laser and Particle Beams, 2025, 37: 106010. doi: 10.11884/HPLPB202537.250202
Citation: Wang Jing, Ouyang Xiaoping, Chen Liang, et al. Effect of area on X-ray response characteristics of vertical NPN detectors[J]. High Power Laser and Particle Beams, 2025, 37: 106010. doi: 10.11884/HPLPB202537.250202

Effect of area on X-ray response characteristics of vertical NPN detectors

doi: 10.11884/HPLPB202537.250202
  • Received Date: 2025-07-08
  • Accepted Date: 2025-09-11
  • Rev Recd Date: 2025-09-11
  • Available Online: 2025-09-17
  • Publish Date: 2025-10-15
  • Background
    A new NPN structure detector based on SiC with internal gain characteristics was designed successfully.
    Purpose
    This study aims to analyze the effect of area on the NPN detectors.
    Methods
    This research involves the design and fabrication of three dual-end SiC-based NPN structure radiation detectors with different areas. Their DC X-ray response characteristics were experimentally evaluated.
    Results
    The results demonstrate that these detectors operate under the combined effects of externally biased voltage and photovoltaic voltage, exhibiting four distinct knee-points that divide the I-V characteristic curve into five stages. Under identical DC X-ray irradiation conditions, larger-area detectors absorb more X-ray energy, leading to stronger output signals. Smaller-area detectors show higher knee-points on the I-V characteristic curve, indicating a greater ability to withstand voltage. Additionally, the response time of the detectors is closely related to their size, with larger areas resulting in longer switch-off times. The 90%-10% fall time of the 1 cm×1 cm detector is approximately 12.2 ms longer than that of the 0.25 cm×0.25 cm detector.
    Conclusions
    These findings emphasize the importance of considering area in the design of radiation detectors and highlight the need to optimize this parameter to enhance the detector performance.
  • loading
  • [1]
    Johns P M, Nino J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126: 040902. doi: 10.1063/1.5091805
    [2]
    McGregor D S, Hermon H. Room-temperature compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(1): 101-124.
    [3]
    Muggleton A H F. Semiconductor devices for gamma ray, X ray and nuclear radiation detection[J]. Journal of Physics E: Scientific Instruments, 1972, 5(5): 390-404. doi: 10.1088/0022-3735/5/5/001
    [4]
    苏兆锋, 孙江, 蔡丹, 等. 200 keV脉冲硬X射线源能谱测量技术[J]. 现代应用物理, 2022, 13: 030204 doi: 10.12061/j.issn.2095-6223.2022.030204

    Su Zhaofeng, Sun Jiang, Cai Dan, et al. Energy spectrum measurement for 200 keV pulsed hard X-ray source[J]. Modern Applied Physics, 2022, 13: 030204 doi: 10.12061/j.issn.2095-6223.2022.030204
    [5]
    Warburton R E, Intermite G, Myronov M, et al. Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm[J]. IEEE Transactions on Electron Devices, 2013, 60(11): 3807-3813. doi: 10.1109/TED.2013.2282712
    [6]
    Kasap S, Frey J B, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11(5): 5112-5157. doi: 10.3390/s110505112
    [7]
    Yoo H, Lee I S, Jung S, et al. A review of phototransistors using metal oxide semiconductors: research progress and future directions[J]. Advanced Materials, 2021, 33: 2006091. doi: 10.1002/adma.202006091
    [8]
    Lutz G. Detectors with intrinsic amplification[M]//Lutz G. Semiconductor Radiation Detectors: Device Physics. Berlin: Springer, 2007: 239-258.
    [9]
    Bertuccio G, Eremeev I A, Mele F, et al. Current noise spectral density and excess noise of a silicon low-gain avalanche diode (LGAD)[J]. IEEE Transactions on Electron Devices, 2024, 71(10): 5845-5851. doi: 10.1109/TED.2024.3440961
    [10]
    Chen Xiufang, Yang Xianglong, Xie Xuejian, et al. Research progress of large size SiC single crystal materials and devices[J]. Light: Science & Applications, 2023, 12: 28.
    [11]
    Su Linlin, Zhou Dong, Lu Hai, et al. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40: 121802. doi: 10.1088/1674-4926/40/12/121802
    [12]
    Kimoto T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54: 040103. doi: 10.7567/JJAP.54.040103
    [13]
    李正, 吴健, 白忠雄, 等. 4H-SiC探测器的γ辐照影响研究[J]. 强激光与粒子束, 2019, 31: 086002 (Li Zheng, Wu Jian, Bai Zhongxiong, et al. Study of gamma irradiation effect on the 4H-SiC detector[J]. High Power Laser and Particle Beams, 2019, 31: 086002 doi: 10.11884/HPLPB201931.180345

    Li Zheng, Wu Jian, Bai Zhongxiong, et al. Study of gamma irradiation effect on the 4H-SiC detector[J]. High Power Laser and Particle Beams, 2019, 31: 086002 doi: 10.11884/HPLPB201931.180345
    [14]
    Wang Jing, Chen Liang, Bai Song, et al. X-Ray detector with Internal Gain Based on a SiC npn structure[J]. IEEE Electron Device Letters, 2024, 45(11): 2142-2145. doi: 10.1109/LED.2024.3451623
    [15]
    Wang Jing, Zhou Leidang, Chen Liang, et al. X-ray performance of SiC NPN radiation detector[J]. Micromachines, 2025, 16: 2.
    [16]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2009

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2009
    [17]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [18]
    张竞涵, 唐波, 夏惊涛, 等. 微通道板型X射线探测器的时间响应[J]. 现代应用物理, 2025, 16: 020201 doi: 10.12061/j.issn.2095-6223.202406007

    Zhang Jinghan, Tang Bo, Xia Jingtao, et al. Time response of a microchannel plate X-ray detector[J]. Modern Applied Physics, 2025, 16: 020201 doi: 10.12061/j.issn.2095-6223.202406007
    [19]
    康明文, 杨海亮, 王刚, 等. Z箍缩X射线入射材料的能量沉积研究[J]. 现代应用物理, 2024, 15: 020207 doi: 10.12061/j.issn.2095-6223.2024.020207

    Kang Mingwen, Yang Hailiang, Wang Gang, et al. Energy deposition of Z-pinch generated X-ray in differrent materials[J]. Modern Applied Physics, 2024, 15: 020207 doi: 10.12061/j.issn.2095-6223.2024.020207
    [20]
    Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (112) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return