Turn off MathJax
Article Contents
Ji Runze, Wang Ke, Niu Jiaxin, et al. Modeling the impact of complex electromagnetic environments on UAV combat effectiveness[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250205
Citation: Ji Runze, Wang Ke, Niu Jiaxin, et al. Modeling the impact of complex electromagnetic environments on UAV combat effectiveness[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250205

Modeling the impact of complex electromagnetic environments on UAV combat effectiveness

doi: 10.11884/HPLPB202537.250205
  • Received Date: 2025-07-10
  • Accepted Date: 2025-08-21
  • Rev Recd Date: 2025-09-02
  • Available Online: 2025-09-13
  • Background
    Modern battlefields are increasingly characterized by complex electromagnetic environments (EME), posing significant challenges to unmanned aerial vehicle (UAV) operational effectiveness.
    Purpose
    To address this issue, this study aims to quantitatively evaluate how complex EME affects UAV operational effectiveness using a multi-level framework, incorporating defined key metrics including anti-jamming capability verification.
    Methods
    A three-tier evaluation model was developed, incorporating EME complexity, subsystem performance, and operational capabilities. EME complexity was characterized by four metrics weighted via AHP. Critical subsystem indicators—such as communication reliability and navigation accuracy—and operational capabilities like mission execution and anti-jamming performance were causally mapped within an environment-effectiveness mapping. This mapping enabled the model to be normalized and integrated using sensitivity coefficients, and stochastic jamming scenarios were simulated in MATLAB to validate the approach.
    Results
    The results demonstrated a distinct negative exponential relationship between EME complexity and operational effectiveness. Performance declined progressively with intensified EME, but notably, UAVs equipped with advanced anti-jamming systems maintained higher effectiveness under identical conditions.
    Conclusions
    This study confirms the critical importance of anti-jamming technologies in preserving UAV combat capability in complex EME, the evaluation framework offers practical insights for developing robust UAV systems suited to contested electromagnetic spectra.
  • loading
  • [1]
    王汝群. 战场电磁环境[M]. 北京: 解放军出版社, 2006

    Wang Ruqun. Battle field electromagnetic environment[M]. Beijing: PLA Press, 2006
    [2]
    宣源, 田晓凌, 程德胜, 等. 战场电磁环境对无人机系统的干扰分析[J]. 装备环境工程, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025

    Xuan Yuan, Tian Xiaoling, Cheng Desheng, et al. Analysis of the battle field electromagnetic interference on unmanned aerial vehicle system[J]. Equipment Environmental Engineering, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025
    [3]
    钟科. 复杂电磁场对机载设备的干扰研究[D]. 西安: 西安电子科技大学, 2012

    Zhong Ke. The research on complex electromagnetic field interfereing the airborne equipment[D]. Xi’an: Xidian University, 2012
    [4]
    Zhang S, Li. Bit error rate degradation of UAV data links under pulsed electromagnetic interference[J]. IEEE Transactions on Electromagnetic. Compatibility, 2022, 64(5): 1423-1431. doi: 10.1109/TEMC.2022.3179676
    [5]
    Johnson A B, Smith R L, et al. GPS spoofing impact on UAV navigation in contested environments[J]. The Journal of Navigation, 2021, 75(3): 567-580.
    [6]
    Wang L, Zhou Q, et al. Electromagnetic pulse effects on infrared sensors for military UAVs[J]. Sensors and Actuators A: Physical, 2023, 344: 113701.
    [7]
    Johnson A B, Williams C D, Brown K L. Deep reinforcement learning for anti-jamming UAV communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1021-1035. doi: 10.1109/TAES.2021.3117073
    [8]
    Wang Jianjun, Liu Bin, et al. Spectrum conflict prediction model for UAV swarms in complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44: 226541.
    [9]
    Garcia M P, et al. Limitations of isolated subsystem analysis for UAV EM vulnerability assessment[J]. IEEE Aerosp. Electron Syst Mag, 2022, 37(4): 30-45. doi: 10.1109/MAES.2021.3052307
    [10]
    Chen Xiaolong, Zhang Hua, Li Wei. Qualitative vs quantitative approaches in UAV combat effectiveness evaluation[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1129-1141.
    [11]
    柯宏发, 张军奇, 祝冀鲁, 等. 电子装备作战试验电磁环境的逼真性评估[J]. 兵工学报, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026

    Ke Hongfa, Zhang Junqi, Zhu Jilu, et al. Fidelity evaluation of electromagnetic environment in operational tests of electronic equipment[J]. Acta Armamentarii, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026
    [12]
    胡媛媛, 武云鹏, 丁玲, 等. 地面无人装备环境感知能力评价方法研究[J]. 火力与指挥控制, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015

    Hu Yuanyuan, Wu Yunpeng, Ding Ling, et al. Assessment method of environmental perception ability in unmanned-ground equipment[J]. Fire Control & Command Control, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015
    [13]
    段继琨, 韩鹏. 基于相似理论的复杂电磁环境逼真度评估研究[J]. 舰船电子工程, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043

    Duan Jikun, Han Peng. Research on the evaluation of complex electromagnetic environment fidelity based on similitude theory[J]. Ship Electronic Engineering, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043
    [14]
    王睿, 姜宁, 陈奇. 基于训练效果评估需求的战场电磁环境复杂度研究[J]. 舰船电子对抗, 2015, 38(4): 89-92

    Wang Rui, Jiang Ning, Chen Qi. Research into battlefield electromagnetic environment complexity based on evaluation requirement of training effect[J]. Shipboard Electronic Countermeasure, 2015, 38(4): 89-92
    [15]
    金朝, 丁竑, 徐忠富, 等. 基于物元模型-AHP的战场电磁环境复杂度评估[J]. 舰船电子工程, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048

    Jin Zhao, Ding Hong, Xu Zhongfu, et al. Complexity evaluation method of battlefield electromagnetic environment based on matter-element model and AHP[J]. Ship Electronic Engineering, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048
    [16]
    王东. 复杂电磁环境数字仿真系统研究[J]. 装备环境工程, 2018, 15(1): 100-104

    Wang Dong. Digital simulation system of complex electromagnetic environment[J]. Equipment Environmental Engineering, 2018, 15(1): 100-104
    [17]
    马艳艳, 林强, 李旭辉. 基于层次分析法的电磁环境复杂度计算与评估[J]. 现代防御技术, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003

    Ma Yanyan, Lin Qiang, Li Xuhui. Calculation and evaluation method of complex electromagnetic environment based on analytic hierarchy process[J]. Modern Defense Technology, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003
    [18]
    焦彦维, 侯德亭, 周东方, 等. 无人机在复杂电磁环境下的效能评估[J]. 强激光与粒子束, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201

    Jiao Yanwei, Hou Deting, Zhou Dongfang, et al. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201
    [19]
    陈强, 魏光辉, 陈亚洲, 等. 3维电介质击穿模型在雷电防护系统评估试验中的应用[J]. 强激光与粒子束, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721

    Chen Qiang, Wei Guanghui, Chen Yazhou, et al. Application of three-dimensional dielectric breakdown model to lightning protection system evaluation[J]. High Power Laser and Particle Beams, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721
    [20]
    郭宝录, 李朝荣, 乐洪宇. 国外无人机技术的发展动向与分析[J]. 舰船电子工程, 2005, 28(9): 46-49,112

    Guo Baolu, Li Chaorong, Le Hongyu. Development trend and analysis of the technology of the abroad UAV[J]. Ship Electronic Engineering, 2005, 28(9): 46-49,112
    [21]
    马艳艳, 金宏斌, 李浩, 等. 改进粒子群算法在雷达组网优化布站中的应用[J]. 现代防御技术, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017

    Ma Yanyan, Jin Hongbin, Li Hao, et al. Application of improved PSO algorithm in radar-net deployment[J]. Modern Defense Technology, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017
    [22]
    Rappaport T S. Wireless communications: principles and practice[M]. Prentice Hall PTR, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (28) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return