Citation: | Ji Runze, Wang Ke, Niu Jiaxin, et al. Modeling the impact of complex electromagnetic environments on UAV combat effectiveness[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250205 |
[1] |
王汝群. 战场电磁环境[M]. 北京: 解放军出版社, 2006
Wang Ruqun. Battle field electromagnetic environment[M]. Beijing: PLA Press, 2006
|
[2] |
宣源, 田晓凌, 程德胜, 等. 战场电磁环境对无人机系统的干扰分析[J]. 装备环境工程, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025
Xuan Yuan, Tian Xiaoling, Cheng Desheng, et al. Analysis of the battle field electromagnetic interference on unmanned aerial vehicle system[J]. Equipment Environmental Engineering, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025
|
[3] |
钟科. 复杂电磁场对机载设备的干扰研究[D]. 西安: 西安电子科技大学, 2012
Zhong Ke. The research on complex electromagnetic field interfereing the airborne equipment[D]. Xi’an: Xidian University, 2012
|
[4] |
Zhang S, Li. Bit error rate degradation of UAV data links under pulsed electromagnetic interference[J]. IEEE Transactions on Electromagnetic. Compatibility, 2022, 64(5): 1423-1431. doi: 10.1109/TEMC.2022.3179676
|
[5] |
Johnson A B, Smith R L, et al. GPS spoofing impact on UAV navigation in contested environments[J]. The Journal of Navigation, 2021, 75(3): 567-580.
|
[6] |
Wang L, Zhou Q, et al. Electromagnetic pulse effects on infrared sensors for military UAVs[J]. Sensors and Actuators A: Physical, 2023, 344: 113701.
|
[7] |
Johnson A B, Williams C D, Brown K L. Deep reinforcement learning for anti-jamming UAV communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1021-1035. doi: 10.1109/TAES.2021.3117073
|
[8] |
Wang Jianjun, Liu Bin, et al. Spectrum conflict prediction model for UAV swarms in complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44: 226541.
|
[9] |
Garcia M P, et al. Limitations of isolated subsystem analysis for UAV EM vulnerability assessment[J]. IEEE Aerosp. Electron Syst Mag, 2022, 37(4): 30-45. doi: 10.1109/MAES.2021.3052307
|
[10] |
Chen Xiaolong, Zhang Hua, Li Wei. Qualitative vs quantitative approaches in UAV combat effectiveness evaluation[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1129-1141.
|
[11] |
柯宏发, 张军奇, 祝冀鲁, 等. 电子装备作战试验电磁环境的逼真性评估[J]. 兵工学报, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026
Ke Hongfa, Zhang Junqi, Zhu Jilu, et al. Fidelity evaluation of electromagnetic environment in operational tests of electronic equipment[J]. Acta Armamentarii, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026
|
[12] |
胡媛媛, 武云鹏, 丁玲, 等. 地面无人装备环境感知能力评价方法研究[J]. 火力与指挥控制, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015
Hu Yuanyuan, Wu Yunpeng, Ding Ling, et al. Assessment method of environmental perception ability in unmanned-ground equipment[J]. Fire Control & Command Control, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015
|
[13] |
段继琨, 韩鹏. 基于相似理论的复杂电磁环境逼真度评估研究[J]. 舰船电子工程, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043
Duan Jikun, Han Peng. Research on the evaluation of complex electromagnetic environment fidelity based on similitude theory[J]. Ship Electronic Engineering, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043
|
[14] |
王睿, 姜宁, 陈奇. 基于训练效果评估需求的战场电磁环境复杂度研究[J]. 舰船电子对抗, 2015, 38(4): 89-92
Wang Rui, Jiang Ning, Chen Qi. Research into battlefield electromagnetic environment complexity based on evaluation requirement of training effect[J]. Shipboard Electronic Countermeasure, 2015, 38(4): 89-92
|
[15] |
金朝, 丁竑, 徐忠富, 等. 基于物元模型-AHP的战场电磁环境复杂度评估[J]. 舰船电子工程, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048
Jin Zhao, Ding Hong, Xu Zhongfu, et al. Complexity evaluation method of battlefield electromagnetic environment based on matter-element model and AHP[J]. Ship Electronic Engineering, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048
|
[16] |
王东. 复杂电磁环境数字仿真系统研究[J]. 装备环境工程, 2018, 15(1): 100-104
Wang Dong. Digital simulation system of complex electromagnetic environment[J]. Equipment Environmental Engineering, 2018, 15(1): 100-104
|
[17] |
马艳艳, 林强, 李旭辉. 基于层次分析法的电磁环境复杂度计算与评估[J]. 现代防御技术, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003
Ma Yanyan, Lin Qiang, Li Xuhui. Calculation and evaluation method of complex electromagnetic environment based on analytic hierarchy process[J]. Modern Defense Technology, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003
|
[18] |
焦彦维, 侯德亭, 周东方, 等. 无人机在复杂电磁环境下的效能评估[J]. 强激光与粒子束, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201
Jiao Yanwei, Hou Deting, Zhou Dongfang, et al. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201
|
[19] |
陈强, 魏光辉, 陈亚洲, 等. 3维电介质击穿模型在雷电防护系统评估试验中的应用[J]. 强激光与粒子束, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721
Chen Qiang, Wei Guanghui, Chen Yazhou, et al. Application of three-dimensional dielectric breakdown model to lightning protection system evaluation[J]. High Power Laser and Particle Beams, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721
|
[20] |
郭宝录, 李朝荣, 乐洪宇. 国外无人机技术的发展动向与分析[J]. 舰船电子工程, 2005, 28(9): 46-49,112
Guo Baolu, Li Chaorong, Le Hongyu. Development trend and analysis of the technology of the abroad UAV[J]. Ship Electronic Engineering, 2005, 28(9): 46-49,112
|
[21] |
马艳艳, 金宏斌, 李浩, 等. 改进粒子群算法在雷达组网优化布站中的应用[J]. 现代防御技术, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017
Ma Yanyan, Jin Hongbin, Li Hao, et al. Application of improved PSO algorithm in radar-net deployment[J]. Modern Defense Technology, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017
|
[22] |
Rappaport T S. Wireless communications: principles and practice[M]. Prentice Hall PTR, 1996.
|