Volume 37 Issue 10
Sep.  2025
Turn off MathJax
Article Contents
Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation[J]. High Power Laser and Particle Beams, 2025, 37: 106013. doi: 10.11884/HPLPB202537.250214
Citation: Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation[J]. High Power Laser and Particle Beams, 2025, 37: 106013. doi: 10.11884/HPLPB202537.250214

Study of clock generator PLL circuit under total ionizing dose effects in consideration of energy deposition fluctuation

doi: 10.11884/HPLPB202537.250214
  • Received Date: 2025-07-14
  • Accepted Date: 2025-09-09
  • Rev Recd Date: 2025-09-09
  • Available Online: 2025-09-17
  • Publish Date: 2025-10-15
  • Background
    Phase-locked loops (PLL) circuit plays a significant role in microprocessor clock circuits and high-speed interface circuits. Conducting research on the strong radiation effect of PLL circuits could provide basic data for evaluating their overall damage response.
    Purpose
    In consideration of transistors’ energy deposition fluctuation to be more close to practical radiation, the total ionizing dose (TID) effect of a typical 0.18 μm process phase-locked loops circuit (PLL) was equivalently studied, which could make up for the deficiencies of previous related research.
    Methods
    Employing Monte Carlo sampling method to modify the sensitive parameters of the transistor SPICE model, the TID effect of PLL circuit was studied, where the statistical distributions of output frequency f, phase difference δ, and control voltage Vvco_in under different TID ranging from 0 to 200 krad (SiO2) are given.
    Results
    Results demonstrate that the values of f and δ would be changed in various degrees under TID effect without considering the energy deposition fluctuations, and they could eventually return to normal through the circuit’s feedback mechanism. On the contrary, when considering the energy deposition fluctuations, the PLL circuit shows an unexpected frequency response after phase locking, which may lead to data loss during the communication process and disturbances to the processor’s functionality, thus leading to a disaster’s impact on the overall behavior of the circuit.
    Conclusions
    The simulation methods and results in this paper could provide references for considering or evaluating TID effect of PLL circuits under real conditions, and further offer suggestions on the design of anti-TID effect of PLL circuits.
  • loading
  • [1]
    Kaura V, Blasko V. Operation of a phase locked loop system under distorted utility conditions[J]. IEEE Transactions on Industry Applications, 1997, 33(1): 58-63. doi: 10.1109/28.567077
    [2]
    Mestice M, Ciarpi G, Rossi D, et al. An integrated charge pump for phase-locked loop applications in harsh environments[J]. Electronics, 2024, 13: 744. doi: 10.3390/electronics13040744
    [3]
    Maffezzoni P, Levantino S. Analysis of VCO phase noise in charge-pump phase-locked loops[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2165-2175. doi: 10.1109/TCSI.2012.2185312
    [4]
    Lee J S, Keel M S, Lim S I, et al. Charge pump with perfect current matching characteristics in phase-locked loops[J]. Electronics Letters, 2000, 36(23): 1907-1908. doi: 10.1049/el:20001358
    [5]
    方盛, 秦希, 蒋俊, 等. 一种快速捕获带宽可调的锁相环电路[J]. 固体电子学研究与进展, 2009, 29(4): 556-560,565 doi: 10.3969/j.issn.1000-3819.2009.04.017

    Fang Sheng, Qin Xi, Jiang Jun, et al. A fast acquisition PLL with tunable loop bandwidth[J]. Research & Progress of Solid State Electronics, 2009, 29(4): 556-560,565 doi: 10.3969/j.issn.1000-3819.2009.04.017
    [6]
    庞浩, 俎云霄, 王赞基. 一种新型的全数字锁相环[J]. 中国电机工程学报, 2003, 23(2): 37-41,131 doi: 10.3321/j.issn:0258-8013.2003.02.008

    Pang Hao, Zu Yunxiao, Wang Zanji. A new design of all digital phase-locked loop[J]. Proceedings of the CSEE, 2003, 23(2): 37-41,131 doi: 10.3321/j.issn:0258-8013.2003.02.008
    [7]
    Santos Filho R M, Seixas P F, Cortizo P C, et al. Comparison of three single-phase PLL algorithms for UPS applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 2923-2932. doi: 10.1109/TIE.2008.924205
    [8]
    沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
    [9]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [10]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [11]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [12]
    乔登江. 核爆炸物理概论[M]. 北京: 原子能出版社, 1982

    Qiao Dengjiang. General principles to the physics of nuclear burst[M]. Beijing: Atomic Energy Press, 1982
    [13]
    秦军瑞, 陈吉华, 赵振宇, 等. 锁相环电路中压控振荡器的SET响应研究[J]. 计算机工程与科学, 2011, 33(2): 75-79 doi: 10.3969/j.issn.1007-130X.2011.02.015

    Qin Junrui, Chen Jihua, Zhao Zhenyu, et al. Research on single-event transients in voltage-controlled oscillators of phase-locked loops[J]. Computer Engineering and Science, 2011, 33(2): 75-79 doi: 10.3969/j.issn.1007-130X.2011.02.015
    [14]
    Ahirwar R, Pattanaik M, Srivastava P. Radiation hardened by design-based voltage controlled oscillator for low power phase locked loop application[J]. Journal of Electronic Testing, 2024, 40(2): 171-184. doi: 10.1007/s10836-024-06113-x
    [15]
    Fu Yanjun, Peng Zhigang, Dong Zhiyong, et al. A study on the timing sensitivity of the transient dose rate effect on complementary metal-oxide-semiconductor image sensor readout circuits[J]. Sensors, 2024, 24: 7659. doi: 10.3390/s24237659
    [16]
    伏琰军, 韦源, 左应红, 等. 典型ADC电路中斜坡发生器瞬时剂量率效应时序敏感性分析[J]. 现代应用物理, 2024, 15: 060601

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Timing sensitivity of ramp generator of typical ADC circuit radiated by transient dose rate[J]. Modern Applied Physics, 2024, 15: 060601
    [17]
    伏琰军, 韦源, 左应红, 等. 典型相关双采样电路瞬时剂量率辐射效应时序敏感性[J]. 现代应用物理, 2025, 16: 020605

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Timing sensitivity of the transient dose rate radiation effect on typical correlation double sampling circuit[J]. Modern Applied Physics, 2025, 16: 020605
    [18]
    Oldham T R, McLean F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 483-499. doi: 10.1109/TNS.2003.812927
    [19]
    Li Dongmei, Wang Zhihua, Huangfu Liying, et al. Study of total ionizing dose radiation effects on enclosed gate transistors in a commercial CMOS technology[J]. Chinese Physics, 2007, 16(12): 3760-3765. doi: 10.1088/1009-1963/16/12/034
    [20]
    Prinzie J, Christiansen J, Moreira P, et al. Comparison of a 65 nm CMOS ring- and LC-oscillator based PLL in terms of TID and SEU sensitivity[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 245-252. doi: 10.1109/TNS.2016.2616919
    [21]
    Chen Zhuojun, Ding Ding, Dong Yemin, et al. Study of total-ionizing-dose effects on a single-event-hardened phase-locked loop[J]. IEEE Transactions on Nuclear Science, 2018, 65(4): 997-1004. doi: 10.1109/TNS.2018.2812806
    [22]
    李铁虎. 深亚微米和纳米级集成电路的辐照效应及抗辐照加固技术[D]. 西安: 西安电子科技大学, 2018

    Li Tiehu. Radiation effects and hardening techniques of deep submicron and nano-scale integrated circuits[D]. Xi’an: Xidian University, 2018
    [23]
    吕荫学, 刘梦新, 罗家俊, 等. 辐照加固的500MHz锁相环设计[J]. 半导体技术, 2011, 36(1): 49-54

    Lü Yinxue, Liu Mengxin, Luo Jiajun, et al. Design of radiaiton hardened 500MHz phase-locked loop[J]. Semiconductor Technology, 2011, 36(1): 49-54
    [24]
    叶蓉. 可编程抗辐射锁相环设计[D]. 哈尔滨: 哈尔滨工业大学, 2015

    Ye Rong. Design of programmable radiation-hardend phase-locked-loop[D]. Harbin: Harbin Institute of Technology, 2015
    [25]
    答元. MOS器件电离损伤的蒙特卡罗模拟研究[D]. 西安: 西安工业大学, 2011

    Da Yuan. Study of Monte Carlo simulation of the ionization damage of MOS device[D]. Xi'an: Xi'an Technological University, 2011
    [26]
    王敬敬. CMOS低相噪锁相环电路的设计与研究[D]. 北京: 北京交通大学, 2024

    Wang Jingjing. Design and research of CMOS low phase noise phase-locked loop circuit[D]. Beijing: Beijing Jiaotong University, 2024
    [27]
    Kumar P G, Bhatt D. Design and analysis of high speed phase frequency detector with zero dead zone in PLL[J]. IETE Journal of Research, 2025, 71(4): 1190-1198. doi: 10.1080/03772063.2025.2450038
    [28]
    李金凤, 郭瑞华, 凌辛旺, 等. 基于55 nm CMOS工艺的小数分频电荷泵锁相环设计[J]. 电子设计工程, 2024, 32(12): 71-75

    Li Jinfeng, Guo Ruihua, Ling Xinwang, et al. Design of fractional frequency division charge pump PLL based on 55 nm CMOS process[J]. Electronic Design Engineering, 2024, 32(12): 71-75
    [29]
    Li Tongde, Zhao Yuanfu, Wang Liang, et al. Investigation on transient ionizing radiation effects in a 4-Mb SRAM with dual supply voltages[J]. IEEE Transactions on Nuclear Science, 2022, 69(3): 340-348. doi: 10.1109/TNS.2022.3148441
    [30]
    Kumar M, Ubhi J S, Basra S, et al. Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology[J]. Microelectronics Journal, 2021, 115: 105182. doi: 10.1016/j.mejo.2021.105182
    [31]
    伏琰军, 韦源, 左应红, 等. 典型CMOS图像传感器读出电路总剂量辐射效应仿真模拟研究[J]. 现代应用物理, 2025, 16: 030604 doi: 10.12061/j.issn.2095-6223.202409003

    Fu Yanjun, Wei Yuan, Zuo Yinghong, et al. Simulation study of total dose radiation effect on readout circuit of typical CMOS image sensor[J]. Modern Applied Physics, 2025, 16: 030604 doi: 10.12061/j.issn.2095-6223.202409003
    [32]
    李海松, 王斌, 杨博, 等. 14 nm体硅FinFET工艺标准单元的总剂量效应[J]. 半导体技术, 2025, 50(6): 619-624,647

    Li Haisong, Wang Bin, Yang Bo, et al. Total ionizing dose effect of standard cells for 14 nm bulk silicon FinFET processor[J]. Semiconductor Technology, 2025, 50(6): 619-624,647
    [33]
    Haran B S, Kumar A, Adam L, et al. 22 nm technology compatible fully functional 0.1 μm2 6T-SRAM cell[C]//2008 IEEE International Electron Devices Meeting. 2008: 1-4.
    [34]
    Raine M, Gaillardin M, Paillet P, et al. Dispersion of heavy ion deposited energy in nanometric electronic devices: experimental measurements and simulation possibilities[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 365: 636-640. doi: 10.1016/j.nimb.2015.09.087
    [35]
    Junior Rossetto A C, Wirth G I, Dallasen R V. Performance analysis of a clock generator PLL under TID effects[C]//2014 15th Latin American Test Workshop. 2014: 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (127) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return