Turn off MathJax
Article Contents
Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250215
Citation: Han Lihui, Zhu Jinhui, Wang Jianguo, et al. Investigation of emitted electron characteristics from typical materials under X-ray irradiation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250215

Investigation of emitted electron characteristics from typical materials under X-ray irradiation

doi: 10.11884/HPLPB202537.250215
  • Received Date: 2025-07-15
  • Accepted Date: 2025-08-19
  • Rev Recd Date: 2025-08-21
  • Available Online: 2025-09-02
  • Background
    System-generated electromagnetic pulse (SGEMP) effects induced by X-ray irradiation pose a significant threat to electronic systems in aerospace and nuclear environments. Accurate quantification of electron emission parameters, which are critical current sources for SGEMP simulation, remains challenging because of the complex coupled photon-electron transport processes involved.
    Purpose
    This study aims to systematically investigate the characteristics of backward- and forward-emitted electrons from typical materials (e.g., aluminum) under X-ray irradiation and develop efficient analytical models for predicting electron yields without relying on computationally intensive Monte Carlo (MC) simulations for each new scenario.
    Methods
    Photon-electron coupled transport simulations were performed using a Monte Carlo module combining the condensed history and single-event methods. The energy and angular distributions of emitted electrons were analyzed for X-rays (0.1–100 keV) normally incident on aluminum plates of varying thicknesses. Analytical models for backward and forward electron yields were derived based on photon mean free path, electron maximum range, and attenuation laws, with a cumulative correction factor introduced to improve forward yield accuracy.
    Results
    Backward electron energy spectra exhibited a double-peak structure (Compton and photoelectron peaks), with angular distributions following a cosine law. A saturation thickness of~3 photon mean free paths was identified for backward yield, beyond which yields remained constant. For forward emission, yields peaked at the electron maximum range thickness and decreased with further increasing plate thickness. The proposed analytical formulas for both backward and forward yields achieved relative errors within 10% compared to direct MC simulations across the studied energy and thickness ranges.
    Conclusions
    The derived analytical models provide efficient and accurate predictions of electron emission coefficients for SGEMP source terms, reducing the need for repeated MC simulations. The methodology is generalizable to other materials and supports rapid assessment of X-ray-induced electron emission in complex systems. Future work will explore machine learning techniques to further enhance computational efficiency for broader applications.
  • loading
  • [1]
    孟萃. 瞬态电离辐射激励强电磁脉冲[M]. 北京: 清华大学出版社, 2022: 85

    Meng Cui. Transient ionizing radiation induced intense electromagnetic pulse[M]. Beijing: Tsinghua University Press, 2022: 85
    [2]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [3]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [4]
    陈剑楠, 陶应龙, 牛胜利. X射线辐照圆柱腔体SGEMP电子发射参数的计算[J]. 现代应用物理, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501

    Chen Jiannan, Tao Yinglong, Niu Shengli. Calculation of electron emission parameter of SGEMP in cylinder cavity irradiated by X-rays[J]. Modern Applied Physics, 2020, 11: 010501 doi: 10.12061/j.issn.2095-6223.2020.010501
    [5]
    Dolan K W. X-ray-induced electron emission from metals[J]. Journal of Applied Physics, 1975, 46(6): 2456-2463. doi: 10.1063/1.322229
    [6]
    Bernstein M J, Paschen K W. Forward and backward photoemission yields from metals at various X-ray angles of incidence[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 111-116. doi: 10.1109/TNS.1973.4327380
    [7]
    Chadsey W L, Wilson C W, Pine V W. X-ray photoemission calculations[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2345-2350. doi: 10.1109/TNS.1975.4328131
    [8]
    Dellin T A, MacCallum C J. Photo-Compton currents emitted from a surface[J]. Journal of Applied Physics, 1975, 46(7): 2924-2934. doi: 10.1063/1.322022
    [9]
    Dellin T A, Huddleston R E, MacCallum C J. Second generation analytical photo-Compton current methods[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2549-2555. doi: 10.1109/TNS.1975.4328166
    [10]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environment[J]. Modern Applied Physics, 2023, 14: 030104
    [11]
    张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034

    Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034
    [12]
    孙会芳, 易涛, 董志伟, 等. 神光装置辐照腔体系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273

    Sun Huifang, Yi Tao, Dong Zhiwei, et al. Simulation of cavity system generated electromagnetic pulse radiated by SG-facility[J]. High Power Laser and Particle Beams, 2024, 36: 043024 doi: 10.11884/HPLPB202436.230273
    [13]
    李进玺, 吴伟, 郭景海, 等. “闪光二号”环境中系统电磁脉冲计算模型的验证[J]. 现代应用物理, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005

    Li Jinxi, Wu Wei, Guo Jinghai, et al. Verification of numerical simulation model for SGEMP generated in flash-Ⅱ accelerator environment[J]. Modern Applied Physics, 2016, 7: 030503 doi: 10.3969/j.issn.2095-6223.2016.03.005
    [14]
    陈剑楠, 陶应龙, 陈再高, 等. 系统电磁脉冲模拟中的发射电子参数计算[J]. 现代应用物理, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501

    Chen Jiannan, Tao Yinglong, Chen Zaigao, et al. Calculation of emission electron parameter in simulation of SGEMP[J]. Modern Applied Physics, 2018, 9: 040501 doi: 10.12061/j.issn.2095-6223.2018.040501
    [15]
    Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
    [16]
    Bradford J N. X-ray induced electron emission II[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 105-110. doi: 10.1109/TNS.1973.4327379
    [17]
    Woods A J, Wenaas E P. Photon source SGEMP spectrum evaluations[R]. Sandia National Laboratories, 1978.
    [18]
    Storm L, Israel H I. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100[J]. Atomic Data and Nuclear Data Tables, 1970, 7(6): 565-681. doi: 10.1016/S0092-640X(70)80017-1
    [19]
    Berger M J. Monte Carlo calculation of the penetration and diffusion of fast charged particles[M]//Alder B, Fernbach S, Rotenberg M. Methods in Computational Physics, Vol. 1. New York: Academic Press, 1963: 135.
    [20]
    Seltzer S M. Cross sections for bremsstrahlung production and electron-impact ionization[M]//Jenkins T M, Nelson W R, Rindi A. Monte Carlo Transport of Electrons and Photons. Boston: Springer, 1988: 81.
    [21]
    夏益华. 高等电离辐射防护教程[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 87

    Xia Yihua. Advanced course on ionizing radiation protection[M]. Harbin: Harbin Engineering University Press, 2010: 87
    [22]
    乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011

    Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011
    [23]
    游检卫, 张嘉男, 刘彻, 等. 智能计算电磁学及其超材料智能设计应用[J]. 现代应用物理, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045

    You Jianwei, Zhang Jianan, Liu Che, et al. Intelligent computational electromagnetics and its applications in intelligent design of metamaterials[J]. Modern Applied Physics, 2025, 16: 011301 doi: 10.12061/j.issn.2095-6223.202412045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return