Citation: | Shang Peng, Niu Shengli, Zhu Jinhui, et al. Monte Carlo simulation of the γ-radiation dose field from fission products[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250220 |
[1] |
乔登江. 核爆炸物理概论(上册)[M]. 北京: 国防工业出版社, 2003
Qiao Dengjiang. General principles to the physics of nuclear burst (Vol. 1)[M]. Beijing: National Defense Industry Press, 2003
|
[2] |
刘利, 牛胜利, 朱金辉, 等. 临近空间核爆炸碎片云运动特征与规律研究[J]. 核技术, 2022, 45: 100503 doi: 10.11889/j.0253-3219.2022.hjs.45.100503
Liu Li, Niu Shengli, Zhu Jinhui, et al. Motion characteristics and laws of the debris from a near-space nuclear detonation[J]. Nuclear Techniques, 2022, 45: 100503 doi: 10.11889/j.0253-3219.2022.hjs.45.100503
|
[3] |
Leipunskii O I. Gamma-radiation of an atomic explosion[R]. United States Atomic Energy Commission, 1959.
|
[4] |
朱金辉, 李夏至, 左应红, 等. 不同大气密度条件下近地面γ射线输运的几何相似理论研究[J]. 现代应用物理, 2024, 15: 060202
Zhu Jinhui, Li Xiazhi, Zuo Yinghong, et al. Similarity theory of near-ground gamma-ray transport under different atmospheric density[J]. Modern Applied Physics, 2024, 15: 060202
|
[5] |
Marshall J D, Wells M B. The effect of cutoff energy on monte carlo calculated Gamma-ray dose rates in air[R]. 1966.
|
[6] |
朱金辉, 陶应龙, 卓俊, 等. 模块化粒子输运程序包PHEN的开发与应用[J]. 现代应用物理, 2018, 9: 030203 doi: 10.12061/j.issn.2095-6223.2018.030203
Zhu Jinhui, Tao Yinglong, Zhuo Jun, et al. Development and application of modular particle transportation PHEN package[J]. Modern Applied Physics, 2018, 9: 030203 doi: 10.12061/j.issn.2095-6223.2018.030203
|
[7] |
邓力, 李刚. 粒子输运问题的蒙特卡罗模拟方法与应用(上册)[M]. 北京: 科学出版社, 2019
Deng Li, Li Gang. Monte Carlo simulated methods and applications for particle transport problems[M]. Beijing: Science Press, 2019
|
[8] |
马天予, 金永杰. 基于Boltzmann输运方程的SPECT系统解析建模方法[J]. 高能物理与核物理, 2006, 30(8): 806-811 doi: 10.3321/j.issn:0254-3052.2006.08.022
Ma Tianyu, Jin Yongjie. Analytical system modeling method for SPECT based on the boltzmann transport equation[J]. High Energy Physics and Nuclear Physics, 2006, 30(8): 806-811 doi: 10.3321/j.issn:0254-3052.2006.08.022
|
[9] |
Boman E, Tervo J, Vauhkonen M. Modelling the transport of ionizing radiation using the finite element method[J]. Physics in Medicine and Biology, 2005, 50(2): 265-280. doi: 10.1088/0031-9155/50/2/006
|
[10] |
杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社, 1989
Du Shuhua. Computer simulation of transport problems[M]. Changsha: Hunan Science & Technology Press, 1989
|
[11] |
裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用[M]. 北京: 科学出版社, 1980
Pei Lucheng, Zhang Xiaoze. Monte Carlo method and application in particle transport problem[M]. Beijing: Science Press, 1980
|
[12] |
黄祖洽, 丁鄂江. 输运理论[M]. 2版. 北京: 科学出版社, 2008
Huang Zuqia, Ding Ejiang. Transport theory[M]. 2nd ed. Beijing: Science Press, 2008
|
[13] |
顾樵. 数学物理方法[M]. 北京: 科学出版社, 2012
Gu Qiao. Mathematical methods for physics[M]. Beijing: Science Press, 2012
|
[14] |
Davison B, Sykes J B. Neutron transport theory[M]. Science Press, 1960.
|
[15] |
乔登江. 核爆炸物理概论(下册)[M]. 北京: 国防工业出版社, 2003
Qiao Dengjiang. General principles to the physics of nuclear burst (Vol 2)[M]. Beijing: National Defense and Industry Press, 2003
|
[16] |
Norment H G. DELFIC: department of defense fallout prediction system. Volume I - Fundamentals[R]. Bedford: Atmospheric Science Associates, 1979.
|
[17] |
王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010
Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
|
[18] |
Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
|
[19] |
Engle L B, Fisher P C. Energy and time dependence of delayed gammas from fission[R]. Los Alamos Scientific Lab. , 1961.
|
[20] |
Fisher P C, Engle L B. Delayed gammas from fast-neutron fission of Th232, U233, U235, U238, and Pu239[J]. Physical Review Journals Archive, 1964, 134(4B): B796-B816.
|
[21] |
Walton R B, Sund R E. Delay gamma rays between 2 and 80 μsec after U235 (n, f) and Pu239 (n, f)[J]. Physical Review Journals Archive, 1969, 178: 1894.
|
[22] |
Walton R B, Sund R E. Delayed gamma rays from fission[R]. 1966.
|
[23] |
Ehrhardt L, Boutillier J, Magnan P, et al. Evaluation of overpressure prediction models for air blast above the triple point[J]. Journal of Hazardous Materials, 2016, 311: 176-185. doi: 10.1016/j.jhazmat.2016.02.051
|
[24] |
Xu Weizheng, Wu Weiguo, Lin Yongshui. Numerical method and simplified analytical model for predicting the blast load in a partially confined chamber[J]. Computers & Mathematics with Applications, 2018, 76(2): 284-314.
|
[25] |
Bewick B, Flood I, Chen Z. A neural-network model-based engineering tool for blast wall protection of structures[J]. International Journal of Protective Structures, 2011, 2(2): 159-176. doi: 10.1260/2041-4196.2.2.159
|
[26] |
Armaghani D J, Hasanipanah M, Mahdiyar A, et al. Airblast prediction through a hybrid genetic algorithm-ANN model[J]. Neural Computing and Applications, 2018, 29(9): 619-629. doi: 10.1007/s00521-016-2598-8
|
[27] |
Chan P C, Klein H H. A study of blast effects inside an enclosure[J]. Journal of Fluids Engineering, 1994, 116(3): 450-455. doi: 10.1115/1.2910297
|
[28] |
Kong B, Lee K, Lee S, et al. Indoor propagation and assessment of blast waves from weapons using the alternative image theory[J]. Shock Waves, 2016, 26(2): 75-85. doi: 10.1007/s00193-015-0581-4
|
[29] |
Needham C E. Blast waves[M]. Berlin: Springer, 2010.
|
[30] |
贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167
Jia Leiming, Wang Shufei, Tian Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion and Shock Waves, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167
|
[31] |
Shang Peng, Huang Liuxing, Zhu Jinhui, et al. Development and application of particle transport Monte Carlo simulation modeling toolkit[C]//2022 4th International Conference on Modeling, Simulation, Optimization and Algorithm. 2023: 012040.
|
[32] |
Shang P, Huang L, Zuo Y, et al. Adaptive modeling approach of gamma ray transport within the influence of blast wave[C]//The 16th National Symposium on Monte Carlo Method and Its Application. 2023.
|
[33] |
朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104
Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
|
[34] |
史涛. 蒙特卡罗粒子输运问题中的减方差方法研究[D]. 北京: 中国工程物理研究院, 2018
Shi Tao. Monte Carlo particle transport variance reduction method[D]. Beijing: China Academy of Engineering Physics, 2018
|
[35] |
左应红, 牛胜利, 商鹏, 等. 权窗减方差方法在γ射线长距离输运模拟中的应用[J]. 现代应用物理, 2020, 11: 010205 doi: 10.12061/j.issn.2095-6223.2020.010205
Zuo Yinghong, Niu Shengli, Shang Peng, et al. Weight window variance reduction method for simulating long distance γ-ray transport[J]. Modern Applied Physics, 2020, 11: 010205 doi: 10.12061/j.issn.2095-6223.2020.010205
|
[36] |
刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13: 010202
Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
|
[37] |
刘利, 左应红, 牛胜利, 等. 全局减方差方法在大空间γ辐射场计算中的应用[J]. 核技术, 2024, 47: 020602
Liu Li, Zuo Yinghong, Niu Shengli, et al. Application of global variance reduction methods for the calculation of γ radiation field in a large space[J]. Nuclear Techniques, 2024, 47: 020602
|