Turn off MathJax
Article Contents
Shang Peng, Niu Shengli, Zhu Jinhui, et al. Monte Carlo simulation of the γ-radiation dose field from fission products[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250220
Citation: Shang Peng, Niu Shengli, Zhu Jinhui, et al. Monte Carlo simulation of the γ-radiation dose field from fission products[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250220

Monte Carlo simulation of the γ-radiation dose field from fission products

doi: 10.11884/HPLPB202537.250220
  • Received Date: 2025-07-17
  • Accepted Date: 2025-09-01
  • Rev Recd Date: 2025-08-25
  • Available Online: 2025-09-13
  • Background
    Extreme nuclear events typically generate intense explosions and release radioactive fission products. Fission product γ, emitted during radioactive decay of fission products, can affect radiation dose fields for 105 to 15 seconds. During this period, the source intensity, spectrum, and spatial distribution exhibit significant temporal variations. Concurrently, shock-waves induce complex atmospheric density changes, creating hydrodynamic enhancement effects.
    Purpose
    This study aims to develop a computational model for simulating time-varying fission product γ transport in non-uniform atmospheres perturbed by shock-waves, specifically quantifying the hydrodynamic enhancement effect on γ radiation dose fields.
    Methods
    A computational model for atmospheric density distribution was constructed using the LAMBR theory for shock-wave flow-field evolution. Based on radiation transport time-discrete theory, a transient variable-time-step Monte Carlo (MC) method was developed using the PHEN particle transport code.
    Results
    A validation via 20 kt TNT-equivalent detonation simulations at 400 m altitude was conducted to evaluate the hydrodynamic enhancement effect of fission product γ of 235U. The results demonstrate that, compared to a uniform atmospheric model, the hydrodynamic enhancement effect can amplify the γ dose by 2-3 times at some locations.
    Conclusions
    The proposed transient variable-time-step Monte Carlo simulation method can effectively capture the hydrodynamic enhancement effect of the shock wave-perturbed atmospheric density field on the fission product γ radiation fields.
  • loading
  • [1]
    乔登江. 核爆炸物理概论(上册)[M]. 北京: 国防工业出版社, 2003

    Qiao Dengjiang. General principles to the physics of nuclear burst (Vol. 1)[M]. Beijing: National Defense Industry Press, 2003
    [2]
    刘利, 牛胜利, 朱金辉, 等. 临近空间核爆炸碎片云运动特征与规律研究[J]. 核技术, 2022, 45: 100503 doi: 10.11889/j.0253-3219.2022.hjs.45.100503

    Liu Li, Niu Shengli, Zhu Jinhui, et al. Motion characteristics and laws of the debris from a near-space nuclear detonation[J]. Nuclear Techniques, 2022, 45: 100503 doi: 10.11889/j.0253-3219.2022.hjs.45.100503
    [3]
    Leipunskii O I. Gamma-radiation of an atomic explosion[R]. United States Atomic Energy Commission, 1959.
    [4]
    朱金辉, 李夏至, 左应红, 等. 不同大气密度条件下近地面γ射线输运的几何相似理论研究[J]. 现代应用物理, 2024, 15: 060202

    Zhu Jinhui, Li Xiazhi, Zuo Yinghong, et al. Similarity theory of near-ground gamma-ray transport under different atmospheric density[J]. Modern Applied Physics, 2024, 15: 060202
    [5]
    Marshall J D, Wells M B. The effect of cutoff energy on monte carlo calculated Gamma-ray dose rates in air[R]. 1966.
    [6]
    朱金辉, 陶应龙, 卓俊, 等. 模块化粒子输运程序包PHEN的开发与应用[J]. 现代应用物理, 2018, 9: 030203 doi: 10.12061/j.issn.2095-6223.2018.030203

    Zhu Jinhui, Tao Yinglong, Zhuo Jun, et al. Development and application of modular particle transportation PHEN package[J]. Modern Applied Physics, 2018, 9: 030203 doi: 10.12061/j.issn.2095-6223.2018.030203
    [7]
    邓力, 李刚. 粒子输运问题的蒙特卡罗模拟方法与应用(上册)[M]. 北京: 科学出版社, 2019

    Deng Li, Li Gang. Monte Carlo simulated methods and applications for particle transport problems[M]. Beijing: Science Press, 2019
    [8]
    马天予, 金永杰. 基于Boltzmann输运方程的SPECT系统解析建模方法[J]. 高能物理与核物理, 2006, 30(8): 806-811 doi: 10.3321/j.issn:0254-3052.2006.08.022

    Ma Tianyu, Jin Yongjie. Analytical system modeling method for SPECT based on the boltzmann transport equation[J]. High Energy Physics and Nuclear Physics, 2006, 30(8): 806-811 doi: 10.3321/j.issn:0254-3052.2006.08.022
    [9]
    Boman E, Tervo J, Vauhkonen M. Modelling the transport of ionizing radiation using the finite element method[J]. Physics in Medicine and Biology, 2005, 50(2): 265-280. doi: 10.1088/0031-9155/50/2/006
    [10]
    杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社, 1989

    Du Shuhua. Computer simulation of transport problems[M]. Changsha: Hunan Science & Technology Press, 1989
    [11]
    裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用[M]. 北京: 科学出版社, 1980

    Pei Lucheng, Zhang Xiaoze. Monte Carlo method and application in particle transport problem[M]. Beijing: Science Press, 1980
    [12]
    黄祖洽, 丁鄂江. 输运理论[M]. 2版. 北京: 科学出版社, 2008

    Huang Zuqia, Ding Ejiang. Transport theory[M]. 2nd ed. Beijing: Science Press, 2008
    [13]
    顾樵. 数学物理方法[M]. 北京: 科学出版社, 2012

    Gu Qiao. Mathematical methods for physics[M]. Beijing: Science Press, 2012
    [14]
    Davison B, Sykes J B. Neutron transport theory[M]. Science Press, 1960.
    [15]
    乔登江. 核爆炸物理概论(下册)[M]. 北京: 国防工业出版社, 2003

    Qiao Dengjiang. General principles to the physics of nuclear burst (Vol 2)[M]. Beijing: National Defense and Industry Press, 2003
    [16]
    Norment H G. DELFIC: department of defense fallout prediction system. Volume I - Fundamentals[R]. Bedford: Atmospheric Science Associates, 1979.
    [17]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [18]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [19]
    Engle L B, Fisher P C. Energy and time dependence of delayed gammas from fission[R]. Los Alamos Scientific Lab. , 1961.
    [20]
    Fisher P C, Engle L B. Delayed gammas from fast-neutron fission of Th232, U233, U235, U238, and Pu239[J]. Physical Review Journals Archive, 1964, 134(4B): B796-B816.
    [21]
    Walton R B, Sund R E. Delay gamma rays between 2 and 80 μsec after U235 (n, f) and Pu239 (n, f)[J]. Physical Review Journals Archive, 1969, 178: 1894.
    [22]
    Walton R B, Sund R E. Delayed gamma rays from fission[R]. 1966.
    [23]
    Ehrhardt L, Boutillier J, Magnan P, et al. Evaluation of overpressure prediction models for air blast above the triple point[J]. Journal of Hazardous Materials, 2016, 311: 176-185. doi: 10.1016/j.jhazmat.2016.02.051
    [24]
    Xu Weizheng, Wu Weiguo, Lin Yongshui. Numerical method and simplified analytical model for predicting the blast load in a partially confined chamber[J]. Computers & Mathematics with Applications, 2018, 76(2): 284-314.
    [25]
    Bewick B, Flood I, Chen Z. A neural-network model-based engineering tool for blast wall protection of structures[J]. International Journal of Protective Structures, 2011, 2(2): 159-176. doi: 10.1260/2041-4196.2.2.159
    [26]
    Armaghani D J, Hasanipanah M, Mahdiyar A, et al. Airblast prediction through a hybrid genetic algorithm-ANN model[J]. Neural Computing and Applications, 2018, 29(9): 619-629. doi: 10.1007/s00521-016-2598-8
    [27]
    Chan P C, Klein H H. A study of blast effects inside an enclosure[J]. Journal of Fluids Engineering, 1994, 116(3): 450-455. doi: 10.1115/1.2910297
    [28]
    Kong B, Lee K, Lee S, et al. Indoor propagation and assessment of blast waves from weapons using the alternative image theory[J]. Shock Waves, 2016, 26(2): 75-85. doi: 10.1007/s00193-015-0581-4
    [29]
    Needham C E. Blast waves[M]. Berlin: Springer, 2010.
    [30]
    贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167

    Jia Leiming, Wang Shufei, Tian Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion and Shock Waves, 2019, 39: 064201 doi: 10.11883/bzycj-2018-0167
    [31]
    Shang Peng, Huang Liuxing, Zhu Jinhui, et al. Development and application of particle transport Monte Carlo simulation modeling toolkit[C]//2022 4th International Conference on Modeling, Simulation, Optimization and Algorithm. 2023: 012040.
    [32]
    Shang P, Huang L, Zuo Y, et al. Adaptive modeling approach of gamma ray transport within the influence of blast wave[C]//The 16th National Symposium on Monte Carlo Method and Its Application. 2023.
    [33]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [34]
    史涛. 蒙特卡罗粒子输运问题中的减方差方法研究[D]. 北京: 中国工程物理研究院, 2018

    Shi Tao. Monte Carlo particle transport variance reduction method[D]. Beijing: China Academy of Engineering Physics, 2018
    [35]
    左应红, 牛胜利, 商鹏, 等. 权窗减方差方法在γ射线长距离输运模拟中的应用[J]. 现代应用物理, 2020, 11: 010205 doi: 10.12061/j.issn.2095-6223.2020.010205

    Zuo Yinghong, Niu Shengli, Shang Peng, et al. Weight window variance reduction method for simulating long distance γ-ray transport[J]. Modern Applied Physics, 2020, 11: 010205 doi: 10.12061/j.issn.2095-6223.2020.010205
    [36]
    刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13: 010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
    [37]
    刘利, 左应红, 牛胜利, 等. 全局减方差方法在大空间γ辐射场计算中的应用[J]. 核技术, 2024, 47: 020602

    Liu Li, Zuo Yinghong, Niu Shengli, et al. Application of global variance reduction methods for the calculation of γ radiation field in a large space[J]. Nuclear Techniques, 2024, 47: 020602
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (17) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return