Citation: | Pei Minghong, Xie Haiyan, Qiao Hailiang, et al. Rapid prediction of high-altitude electromagnetic pulse environment based on artificial neural network[J]. High Power Laser and Particle Beams, 2025, 37: 106027. doi: 10.11884/HPLPB202537.250221 |
[1] |
王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010
Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Parameter handbook of high altitude nuclear detonation effect[M]. Beijing: Atomic Energy Press, 2010
|
[2] |
Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
|
[3] |
谢海燕. 系统级HEMP耦合分析方法研究进展[J]. 现代应用物理, 2023, 14: 020102
Xie Haiyan. Research progress of system level HEMP coupling analysis methods[J]. Modern Applied Physics, 2023, 14: 020102
|
[4] |
Karzas W J, Latter R. Detection of the electromagnetic radiation from nuclear explosions in space[J]. Physical Review, 1965, 137: B1369. doi: 10.1103/PhysRev.137.B1369
|
[5] |
Friedman A, Cohen B I, Eng C D, et al. EMPulse, a new 3-D simulation code for EMP formation and propagation[J]. Journal of Radiation Effects: Research and Engineering, 2015, 61(18): 175-184.
|
[6] |
陈剑楠, 张茂钰, 刘利, 等. 结合MCNP的自恰近地面源区电磁脉冲数值模拟方法[J]. 现代应用物理, 2022, 13: 30503
Chen Jiannan, Zhang Maoyu, Liu Li, et al. Self-consistent numerical simulation method of near ground source region electromagnetic pulse combined with MCNP[J]. Modern Applied Physics, 2022, 13: 30503
|
[7] |
Dong Ning, Xie Yanzhao. On the self-consistent simulation of high-altitude electromagnetic pulse[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2074-2082. doi: 10.1109/TNS.2022.3193586
|
[8] |
王锦锦, 程引会, 聂鑫, 等. 基于机器学习的高空电磁脉冲环境快速计算方法[J]. 计算机科学, 2023, 50: 220500046
Wang Jinjin, Cheng Yinhui, Nie Xin, et al. Fast calculation method of high-altitude electromagnetic pulse environment based on machine learning[J]. Computer Science, 2023, 50: 220500046
|
[9] |
乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318
Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318
|
[10] |
Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 2020, 67(12): 2474-2480. doi: 10.1109/TNS.2020.3031320
|
[11] |
王建国. 核爆炸早中期电磁脉冲产生的数值模拟方法[J]. 电波科学学报, 2024, 39(5): 787-796
Wang Jianguo. Numerical simulation method of early-time and intermediate-time electromagnetic pulses generated by nuclear explosions[J]. Chinese Journal of Radio Science, 2024, 39(5): 787-796
|
[12] |
Chulliat A, Brown W, Alken P. The US/UK world magnetic model for 2020-2025[R]. National Oceanic and Atmospheric Administration (NOAA), 2020.
|
[13] |
Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge: MIT Press, 2016.
|
[14] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[15] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
[16] |
贾怀勤. 应用统计[M]. 北京: 对外经济贸易大学出版社, 2005
Jia Huaiqin. Applied statistics[M]. Beijing: University of International Business and Economics Press, 2005
|
[17] |
Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
|
[18] |
王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001
Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001
|
[19] |
Han Feng, Wang Jianguo, Peng Guoliang, et al. physics-informed multiresolution wavelet neural network method for solving partial differential equations[DB/OL]. arXiv preprint arXiv: 2508.07546, 2025.
|