Turn off MathJax
Article Contents
Mao Congguang, Qin Feng, Sun Dongyang, et al. Effectiveness validation of assessment methods of HEMP vulnerability to systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250226
Citation: Mao Congguang, Qin Feng, Sun Dongyang, et al. Effectiveness validation of assessment methods of HEMP vulnerability to systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250226

Effectiveness validation of assessment methods of HEMP vulnerability to systems

doi: 10.11884/HPLPB202537.250226
  • Received Date: 2025-07-19
  • Accepted Date: 2025-09-03
  • Rev Recd Date: 2025-09-03
  • Available Online: 2025-09-12
  • Background
    As the most challenging issue in the field of the electromagnetic pulse effects, no uniform method of the system vulnerability assessment against the high-altitude electromagnetic pulse (HEMP) has been established. The system design, use and test organizations stand on the different perspectives and the different criteria, which lead to the severe discrepancy in the assessment results. On the other hand, the basic data come from several sources, such as the experiential, testing, computation or the subjective judgements, and there is great uncertainty in these data. So the creditability of the assessment conclusions is vital to be validated from the objective and subjective information. However, too high cost and too long term will prohibit the conduct of the whole system test or computation, such as the communication and power infrastructures. Thus the assessment validation is a hard subject.
    Purpose
    In this paper, the computer control system vulnerability for HEMP is taken as an illustration to validate the effectiveness of different assessment methods.
    Methods
    Here three approaches relatively from the fields of the system use, design and test, i.e. The risk analysis, electromagnetic compatibility (EMC) analysis and the Bayesian networks (BN) are adopted and independently evaluate the HEMP susceptibility of the item under test (IUT).
    Results
    Three evaluation results indicate that the assessment methods are effective in despite of different thoughts, emphasizes and knowledge fields.
    Conclusions
    The BN method can preferably respond to the inherent characteristic of HEMP effect assessments, such as the conductivity, uncertainty, synthesis and subjectiveness, so the BN method is potentially promising in the practices.
  • loading
  • [1]
    毛从光, 程引会, 谢彦召. 高空电磁脉冲技术基础[M]. 北京: 科学出版社, 2019: 1-21

    Mao Congguang, Cheng Yinhui, Xie Yanzhao. High altitude electromagnetic pulse technology foundation[M]. Beijing: Science Press, 2019: 1-21
    [2]
    Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 1992, 80(6): 789-817. doi: 10.1109/5.149443
    [3]
    EMP. Report of the commission to assess the threat to the united states from electromagnetic pulse (EMP) attack[R]. Washington: EMP Commission, 2008.
    [4]
    Baker G H. Risk-based national infrastructure protection priorities for EMP and solar storms[R]. Washington: EMP Commission, 2017.
    [5]
    Arnesen O H, Hoad R. Overview of the European project ‘HIPOW’[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 64-67.
    [6]
    van de Beek S, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 70-79. doi: 10.1109/MEMC.2014.7023202
    [7]
    Deniau V. Overview of the European project security of railways in Europe against electromagnetic attacks (SECRET)[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 80-85. doi: 10.1109/MEMC.2014.7023203
    [8]
    Sabath F, Wraight A, Brenner A, et al. Methodology for the HEMP clearance of a modern air fighter[C]//IEEE International Symposium on Electromagnetic Compatibility. 2007: 1-6.
    [9]
    Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European rail traffic management system to radiated intentional EMI[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 101-109. doi: 10.1109/TEMC.2007.915281
    [10]
    祁国成, 李科杰, 李亚峰, 等. 油气管道数据采集与监视控制系统电磁脉冲效应实验[J]. 强激光与粒子束, 2015, 27: 123202 doi: 10.11884/HPLPB201527.123202

    Qi Guocheng, Li Kejie, Li Yafeng, et al. Experimental study on effects of electromagnetic pulse on pipeline supervisory control and data acquisition (SCADA) system[J]. High Power Laser and Particle Beams, 2015, 27: 123202 doi: 10.11884/HPLPB201527.123202
    [11]
    杜传报, 毛从光, 崔志同, 等. 无线通信系统HEMP性能降级效应研究[J]. 现代应用物理, 2022, 13: 030502 doi: 10.12061/j.issn.2095-6223.2022.030502

    Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Performance degradation effect of wireless communication system in HEMP environment[J]. Modern Applied Physics, 2022, 13: 030502 doi: 10.12061/j.issn.2095-6223.2022.030502
    [12]
    杜传报, 毛从光, 崔志同, 等. 分层视角下无线通信网络高空电磁脉冲效应[J]. 强激光与粒子束, 2021, 33: 103004 doi: 10.11884/HPLPB202133.210230

    Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Analysis of high-altitude electromagnetic pulse effect on wireless communication network from hierarchical perspective[J]. High Power Laser and Particle Beams, 2021, 33: 103004 doi: 10.11884/HPLPB202133.210230
    [13]
    杜传报, 毛从光, 崔志同, 等. 甚高频无线通信系统高空电磁脉冲易损性分析[J]. 现代应用物理, 2022, 13: 020505

    Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Vulnerability analysis of very high frequency wireless communication system due to high altitude electromagnetic pulse[J]. Modern Applied Physics, 2022, 13: 020505
    [14]
    秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14: 030102

    Qin Feng, Chen Wei, Mao Congguang, et al. Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 2023, 14: 030102
    [15]
    Leferink F, van de Beek S. Vulnerability of wireless systems to (Intentional) EMI tutorial: tutorial ‘wireless’, WE-PM-1[C]//IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity. 2017: 1-81.
    [16]
    Genender E, Garbe H, Sabath F. Probabilistic risk analysis technique of intentional electromagnetic interference at system level[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(1): 200-207. doi: 10.1109/TEMC.2013.2272944
    [17]
    Mao Congguang, Canavero F. System-level vulnerability assessment for EME: from fault tree analysis to Bayesian networks—Part I: methodology framework[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 180-187. doi: 10.1109/TEMC.2015.2484067
    [18]
    MIL-STD-464, Electromagnetic environmental effects requirements for systems[S].
    [19]
    IEC 61000-2-9, Electromagnetic compatibility (EMC) –Part 2: Environment – section 9: Description of HEMP environment – Radiated disturbance[S].
    [20]
    GJB 8848-2016, 系统电磁环境效应试验方法[S]

    GJB 8848-2016, Electromagnetic environment effects test methods for systems[S]
    [21]
    Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high-altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 2020, 67(12): 2474-2480. doi: 10.1109/TNS.2020.3031320
    [22]
    Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
    [23]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [24]
    王建国. 高空核爆炸磁流体动力学电磁脉冲[J]. 强激光与粒子束, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105

    Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001 doi: 10.11884/HPLPB202436.240105
    [25]
    王建国. 核爆炸早中期电磁脉冲产生的数值模拟方法[J]. 电波科学学报, 2024, 39(5): 787-796 doi: 10.12265/j.cjors.2024143

    Wang Jianguo. Numerical simulation method of early-time and intermediate-time electromagnetic pulses generated by nuclear explosions[J]. Chinese Journal of Radio Science, 2024, 39(5): 787-796 doi: 10.12265/j.cjors.2024143
    [26]
    IEC/TS 61000-5-9, Electromagnetic compatibility (EMC) –Part 5-9: Installation and mitigation guidelines – System-level susceptibility assessments for HEMP and HPEM[S].
    [27]
    IEEE Std 1848™-2020, IEEE standard for techniques and measurement to manage functional safety and other risks with regards to electromagnetic disturbances[S].
    [28]
    Kröger W, Zio E. Vulnerable systems[M]. London: Springer, 2011.
    [29]
    Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. John Wiley & Sons Inc. , 2017.
    [30]
    苏东林, 谢树果, 戴飞, 等. 系统级电磁兼容性量化设计理论与方法[M]. 北京: 国防工业出版社, 2015

    Su Donglin, Xie Shuguo, Dai Fei, et al. The theory and methods of quantification design on system-level electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2015
    [31]
    GB/Z 37150-2018, 电磁兼容可靠性风险评估导则[S]

    GB/Z 37150-2018, Guide of risk assessment of EMC reliability[S]
    [32]
    Pearl J. Causality: models, reasoning and inference[M]. 2nd ed. New York: Cambridge University Press, 2009.
    [33]
    Mao Congguang, Canavero F. Uncertainty analysis in system-level vulnerability assessment for IEMI[C]//IEEE International Symposium on Electromagnetic Compatibility. 2015: 1073-1076.
    [34]
    Mao Congguang, Canavero F G, Cui Zhitong, et al. System-level vulnerability assessment for EME: from fault tree analysis to Bayesian networks—Part II: Illustration to microcontroller system[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 188-196. doi: 10.1109/TEMC.2015.2502591
    [35]
    Liu Yu, Han Feng, Wang Jianguo, et al. Vulnerability assessment of a multistate component for IEMI based on a bayesian method[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(2): 467-475. doi: 10.1109/TEMC.2018.2823870
    [36]
    Yu Liu, Du Peibing, Han Feng, et al. A Bayesian estimation of confidence limits for multi-state system vulnerability assessment with IEMI[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 1219-1229. doi: 10.1109/TEMC.2022.3169820
    [37]
    Xie Haiyan, Wang Jianguo. Research progress in computational methods for system-level coupling of electromagnetic pulse[J]. IEEE Access, 2025, 13: 22259-22269. doi: 10.1109/ACCESS.2025.3536787
    [38]
    Xie Haiyan, Li Yong, Qiao Hailiang, et al. Empirical formula of effective coupling length for transmission lines illuminated by E1 HEMP[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 581-587. doi: 10.1109/TEMC.2016.2518243
    [39]
    IEC 61000-2-10, Electromagnetic compatibility (EMC) –Part 2-10: Environment - Description of HEMP environment – Conducted disturbance[S].
    [40]
    Mao Congguang, Qin Feng, Du Chuanbao. System-level electromagnetic effect analysis of control system by pulsed current injection (PCI) Test[C]//2024 Photonics & Electromagnetics Research Symposium. 2024: 1-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (31) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return