Citation: | Zhang Xiyu, Sheng-Yin Xiangzi, Shen Zhuangming, et al. Measurement and analysis of gating latency in surface-guided particle therapy[J]. High Power Laser and Particle Beams, 2025, 37: 106024. doi: 10.11884/HPLPB202537.250229 |
[1] |
Parodi K, Polf J C. In vivo range verification in particle therapy[J]. Medical Physics, 2018, 45(11): e1036-e1050.
|
[2] |
Durante M, Orecchia R, Loeffler J S. Charged-particle therapy in cancer: clinical uses and future perspectives[J]. Nature Reviews Clinical Oncology, 2017, 14(8): 483-495. doi: 10.1038/nrclinonc.2017.30
|
[3] |
Kubiak T. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation[J]. British Journal of Radiology, 2016, 89: 20150275. doi: 10.1259/bjr.20150275
|
[4] |
Lebbink F, Stock M, Georg D, et al. The influence of motion on the delivery accuracy when comparing actively scanned carbon ions versus protons at a synchrotron-based radiotherapy facility[J]. Cancers, 2022, 14: 1788. doi: 10.3390/cancers14071788
|
[5] |
Lu H M, Brett R, Sharp G, et al. A respiratory-gated treatment system for proton therapy[J]. Medical Physics, 2007, 34(8): 3273-3278. doi: 10.1118/1.2756602
|
[6] |
Otani Y, Fukuda I, Tsukamoto N, et al. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy[J]. Medical Physics, 2010, 37(12): 6178-6186. doi: 10.1118/1.3512798
|
[7] |
Freislederer P, Kügele M, Öllers M, et al. Recent advances in surface guided radiation therapy[J]. Radiation Oncology, 2020, 15: 187. doi: 10.1186/s13014-020-01629-w
|
[8] |
Naumann P, Batista V, Farnia B, et al. Feasibility of optical surface-guidance for position verification and monitoring of stereotactic body radiotherapy in deep-inspiration breath-hold[J]. Frontiers in Oncology, 2020, 10: 573279. doi: 10.3389/fonc.2020.573279
|
[9] |
Hanley J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: an implementation guide for TG 142 quality assurance of medical accelerators[J]. Medical Physics, 2021, 48(10): e830-e885.
|
[10] |
Al-Hallaq H A, Cerviño L, Gutierrez A N, et al. AAPM task group report 302: surface-guided radiotherapy[J]. Medical Physics, 2022, 49(4): e82-e112.
|
[11] |
吴泇俣, 嵇卫星, 张建英. 呼吸门控放射治疗中时间延迟的测量方法[J]. 中国医疗设备, 2022, 37(5): 161-165 doi: 10.3969/j.issn.1674-1633.2022.05.034
Wu Jiayu, Ji Weixing, Zhang Jianying. Review of methods for measuring time delay in respiratory gated radiotherapy[J]. China Medical Devices, 2022, 37(5): 161-165 doi: 10.3969/j.issn.1674-1633.2022.05.034
|
[12] |
Chen Li, Bai Sen, Li Guangjun, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique[J]. Radiation Oncology, 2020, 15: 170. doi: 10.1186/s13014-020-01611-6
|
[13] |
Barfield G, Burton E W, Stoddart J, et al. Quality assurance of gating response times for surface guided motion management treatment delivery using an electronic portal imaging detector[J]. Physics in Medicine & Biology, 2019, 64: 125023.
|
[14] |
Yuze Y, Moyers M F, Zhang X. Reduced time-delay for beam gating using optical marker tracking and FPGA gating interface[C]//AAPM 66th Annual Meeting & Exhibition. 2024.
|
[15] |
Worm E S, Thomsen J B, Johansen J G, et al. A simple method to measure the gating latencies in photon and proton based radiotherapy using a scintillating crystal[J]. Medical Physics, 2023, 50(6): 3289-3298. doi: 10.1002/mp.16418
|
[16] |
Tan H Q, Koh C W Y, Lew K S, et al . Real-time gated proton therapy with a reduced source to imager distance: Commissioning and quality assurance[J]. Physica Medica, 2024, 122: 103380. doi: 10.1016/j.ejmp.2024.103380
|