Volume 37 Issue 10
Sep.  2025
Turn off MathJax
Article Contents
Wang Zujun. Test methods of radiation damage effects on semiconductor laser devices[J]. High Power Laser and Particle Beams, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233
Citation: Wang Zujun. Test methods of radiation damage effects on semiconductor laser devices[J]. High Power Laser and Particle Beams, 2025, 37: 106019. doi: 10.11884/HPLPB202537.250233

Test methods of radiation damage effects on semiconductor laser devices

doi: 10.11884/HPLPB202537.250233
  • Received Date: 2025-07-23
  • Accepted Date: 2025-09-12
  • Rev Recd Date: 2025-09-12
  • Available Online: 2025-09-20
  • Publish Date: 2025-10-15
  • Background
    Semiconductor laser devices (LDs) are a kind of laser with semiconductor material as its working material. LDs are the general name of optical oscillator and optical amplifier produced by photon excited emission caused by electron-optical transition in semiconductor material. LDs have the advantages of small volume, light weight, low power consumption, long life, simple structure, direct modulation and fast response. Thus, LDs are widely used as light source devices in the fields of optics communication, measurement, imaging, display, illumination, industrial processing, medical diagnosis, and so on.
    Purpose
    With the application of LD in space optics communication, large hadron collider, nuclear industry, and other radiation environments, LDs operated in space radiation or nuclear radiation environment will suffer radiation damage. The reliability of LD-based optics communication system in radiation environment has attracted much attention. In view of the few reports on LD irradiation damage test methods at home and abroad, this paper mainly focuses on the radiation damage effects on the LDs used in radiation environment.
    Methods
    Referring to domestic and foreign standards, specifications and guidelines related to the radiation effects on the electronic components, combining LD irradiation damage test, radiation particle transport simulation and radiation effect simulation, and radiation damage mechanism analysis, the test methods of LD irradiation damage effect are studied from the aspects of irradiation source selection, test flow, irradiation bias conditions, etc.
    Result
    The radiation test procedures for the LD displacement effect, ionization total dose effect, and transient dose rate effect are established respectively to form the test method of radiation damage effects on LDs.
    Conclusions
    The research provides the experimental technical supports for the evaluation of LD radiation damage and the test of LD radiation hardening.
  • loading
  • [1]
    王祖军, 宁浩, 薛院院, 等. 半导体激光器辐照损伤效应实验研究进展[J]. 半导体光电, 2020, 41(2): 151-158

    Wang Zujun, Ning Hao, Xue Yuanyuan, et al. Research progresses of radiation damage experiments in laser diodes[J]. Semiconductor Optoelectronics, 2020, 41(2): 151-158
    [2]
    宁浩. 辐照诱发半导体激光器性能退化实验研究与仿真模拟[D]. 湘潭: 湘潭大学, 2020

    Ning Hao. Experimental research and analogue simulation of the performance degradation of laser diode induced by radiation[D]. Xiangtan: Xiangtan University, 2020
    [3]
    常国龙. 半导体激光器辐射效应及影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2010

    Chang Guolong. The study of the influence of radiation effect on laser diodes[D]. Harbin: Harbin Institute of Technology, 2010
    [4]
    王立军, 宁永强. 高功率半导体激光器[M]. 北京: 国防工业出版社, 2016

    Wang Lijun, Ning Yongqiang. High power semiconductor laser[M]. Beijing: National Defense Industry Press, 2016
    [5]
    姜会林, 佟首峰, 张立中, 等. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010

    Jiang Huilin, Tong Shoufeng, Zhang Lizhong, et al. The technologies and systems of space laser communication[M]. Beijing: National Defense Industry Press, 2010
    [6]
    Fields R, Kozlowski D, Yura H, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[C]//Proceedings of 2011 International Conference on Space Optical Systems and Applications. 2011: 44-53.
    [7]
    Petree M C. Degradation of luminescence in neutron-irradiated GaAs diodes[J]. Applied Physics Letters, 1963, 3(4): 67. doi: 10.1063/1.1753871
    [8]
    Barnes C E. Neutron damage in GaAs Laser Diodes: at and above Laser Threshold[J]. IEEE Transactions on Nuclear Science, 1972, 19(6): 382-385. doi: 10.1109/TNS.1972.4326862
    [9]
    Schroeder J O, Noel B W. Neutron irradiation effects on diffused GaAs laser diodes[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 261-265. doi: 10.1109/TNS.1973.4327405
    [10]
    Minden H T. Effects of Proton bombardment on the properties of GaAs laser diodes[J]. Journal of Applied Physics, 1976, 47(3): 1090-1094. doi: 10.1063/1.322731
    [11]
    Millea M F, Aukerman L W. The role of diffusion current in the electroluminescence of GaAs diodes[J]. Applied Physics Letters, 1964, 5(8): 168-169. doi: 10.1063/1.1754101
    [12]
    Compton D M J, Cesena R A. Mechanisms of radiation effects on lasers[J]. IEEE Transactions on Nuclear Science, 1967, 14(6): 55-61. doi: 10.1109/TNS.1967.4324775
    [13]
    Barnes C E. Effects of 60Co gamma irradiation on epitaxial GaAs Laser Diodes[J]. Physical Review B, 1970, 1(12): 4735-4747. doi: 10.1103/PhysRevB.1.4735
    [14]
    林理彬, 黄万霞, 孔梅影. 粒子束辐照在AlGaAs/GaAs量子阱材料中引入的深能级缺陷[J]. 人工晶体学报, 2000, 29(s1): 248

    Lin Libin, Huang Wanxia, Kong Meiying. Deep energy defects in AlGaAs/GaAs quantum well material introduced by particle beam irradiation[J]. Journal of Synthetic Crystals, 2000, 29(s1): 248
    [15]
    黄绍艳, 刘敏波, 王祖军, 等. InGaAsP多量子阱激光二极管及其组件的γ辐射效应[J]. 原子能科学技术, 2009, 43(11): 1024-1028

    Huang Shaoyan, Liu Minbo, Wang Zujun, et al. γ-ray radiation effect on InGaAsP multi-quantum well laser diodes and its component[J]. Atomic Energy Science and Technology, 2009, 43(11): 1024-1028
    [16]
    黄绍艳, 刘敏波, 唐本奇, 等. 多量子阱激光二极管质子辐射效应及其退火特性[J]. 强激光与粒子束., 2009, 21(9): 1405-1410

    Huang Shaoyan, Liu Minbo, Tang Benqi, et al. Proton irradiation effects on multi-quantum-well laser diodes and their annealing characteristics[J]. High Power Laser and Particle Beams, 2009, 21(9): 1405-1410
    [17]
    杨瑞. 量子点激光器空间电离辐射损伤效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2013

    Yang Rui. Research on ionizing radiation effect of quantum dot laser[D]. Harbin: Harbin Institute of Technology, 2013
    [18]
    王俊, 高欣, 冯展祖, 等. 空间光通信用量子点激光器辐射损伤效应研究[J]. 真空与低温, 2019, 25(1): 41-45

    Wang Jun, Gao Xin, Feng Zhanzu, et al. Radiation damage effect of quantum dot laser with space optical communication[J]. Vacuum and Cryogenics, 2019, 25(1): 41-45
    [19]
    MIL-STD-883H, Ionizing radiation (total dose) test procedure[S].
    [20]
    GJB 9397-2018, 军用电子元器件中子辐射效应试验方法[S]

    GJB 9397-2018, Test method for neutron radiation effects of military electronic components[S]
    [21]
    GJB 5422-2005, 军用电子元器件γ射线累积剂量效应测量方法[S]

    GJB 5422-2005, Testing method of military electronic devices for γ-ray total dose radiation[S]
    [22]
    GJB 548C-2021, 微电子器件试验方法和程序[S]

    GJB 548C-2021, Test methods and procedures for microelectronic devices[S]
    [23]
    GJB 7350-2011, 军用电子器件脉冲γ射线效应试验方法[S]

    GJB 7350-2011, Testing method of pulse γ-ray radiation effects for military electronic devices
    [24]
    Petkov M P. New millennium program: space environments on electronic components guidelines[R]. NASA, 2003.
    [25]
    Space Component Coordination Group. Total dose steady-state irradiation test method[R]. ESA/SCC basic specification No. 22900, 1995.
    [26]
    王祖军, 薛院院, 刘敏波, 等. CCD空间环境辐射效应地面模拟试验方法[J]. 现代应用物理, 2016, 7: 040601

    Wang Zujun, Xue Yuanyuan, Liu Minbo, et al. Ground simulation test methods for space environment radiation effects on charge coupled devices[J]. Modern Applied Physics, 2016, 7: 040601
    [27]
    王祖军. CMOS图像传感器辐照损伤效应试验方法[J]. 半导体光电, 2025, 46(1): 180-188

    Wang Zujun. Test methods for radiation damage effects on CMOS image sensors[J]. Semiconductor Optoelectronics, 2025, 46(1): 180-188
    [28]
    谭志新, 敬罕涛, 樊瑞睿, 等. 中国散裂中子源伴生质子辐照实验平台及其技术参数的确定[J]. 现代应用物理, 2024, 15: 020401

    Tan Zhixin, Jing Hantao, Fan Ruirui, et al. Associated protons experimental platform of China spallation neutron source and determination of its technical parameters[J]. Modern Applied Physics, 2024, 15: 020401
    [29]
    沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606
    [30]
    于春青, 李同德, 王亮, 等. 一款商用MRAM电离总剂量效应研究[J]. 现代应用物理, 2023, 14: 010605

    Yu Chunqing, Li Tongde, Wang Liang, et al. Total ionizing dose effect of a commercial magnetoresistive random access memory[J]. Modern Applied Physics, 2023, 14: 010605
    [31]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [32]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [33]
    GJB 3756A-2015, 测量不确定度的表示及评定[S]

    GJB 3756A-2015, Expression and evaluation of uncertainty in measurement[S]
    [34]
    GB 18871-2002, 电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002, Basic standards for protection against ionizing radiation and for the safety of radiation sources[S]
    [35]
    王祖军, 唐本奇, 肖志刚, 等. CCD辐射损伤效应及加固技术研究进展[J]. 半导体光电, 2009, 30(6): 797-802,814

    Wang Zujun, Tang Benqi, Xiao Zhigang, et al. Progress of radiation damage effects and hardening technology on CCD[J]. Semiconductor Optoelectronics, 2009, 30(6): 797-802,814
    [36]
    王祖军, 刘静, 薛院院, 等. CMOS图像传感器总剂量辐照效应及加固技术研究进展[J]. 半导体光电, 2017, 38(1): 1-7

    Wang Zujun, Liu Jing, Xue Yuanyuan, et al. Progress of total ionizing dose radiation effects and hardening technology of CMOS image sensors[J]. Semiconductor Optoelectronics, 2017, 38(1): 1-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (107) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return