Citation: | Han Xiaoxiang, Zhang Xin, Li Jun, et al. Intelligent algorithm for predicting light radiation damage areas and inverting source parameters in nuclear explosion[J]. High Power Laser and Particle Beams, 2025, 37: 106030. doi: 10.11884/HPLPB202537.250235 |
[1] |
Batcher R T. The consequences of an Indo-Pakistani nuclear war[J]. International Studies Review, 2004, 6(4): 135-162. doi: 10.1111/j.1521-9488.2004.00453.x
|
[2] |
Marrs R E, Moss W C, Whitlock B. Thermal radiation from nuclear detonations in urban environments[R]. Livermore: Lawrence Livermore National Laboratory (LLNL), 2007.
|
[3] |
王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010
Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
|
[4] |
Jung H, Shim W. Calculation of thermal fluence from extremely high-energy emission in air[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 1395-1398. doi: 10.1109/TNS.2015.2421891
|
[5] |
Abdil-Hasan J. Analysis of thermal energy distribution from low yield nuclear explosions[J]. Modern Applied Science, 2017, 11(8): 1-6. doi: 10.5539/mas.v11n8p1
|
[6] |
Brode H L. Fireball phenomenology[M]. Santa Monica: The Rand Corporation, 1964: 1-46.
|
[7] |
Brode H L, Hillendahl R W, Landshoff R K. Thermal radiation phenomena. volume 5: radiation hydrodynamics of high temperature air[R]. Sunnyvale: The Lockheed Missiles and Space Company, 1967: 1-81.
|
[8] |
Hoerlin H. United States high-altitude test experiences[R]. Los Alamos: Los Alamos Scientific Laboratory, 1976: LA-6405.
|
[9] |
Hoerlin H. Artificial aurora and upper atmospheric shock produced by teak[R]. Los Alamos: Los Alamos Scientific Laboratory, 1961.
|
[10] |
Glasstone S. The effects of nuclear weapons[M]. Washington: Atomic Energy Commission, 1962: 1-100.
|
[11] |
Bethe H A. Theory of the fireball[R]. Los Alamos: Los Alamos National Laboratory (LANL), 1964.
|
[12] |
Bethe H A. The fireball in air[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1965, 5(1): 9-12. doi: 10.1016/0022-4073(65)90027-0
|
[13] |
Peery T, Walli K. Physical modeling of nuclear detonations in dirsig[C]//2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). 2013: 1-12.
|
[14] |
乔登江. 核爆炸火球物理[J]. 物理学进展, 1983, 3(2): 236-267 doi: 10.3321/j.issn:1000-0542.1983.02.004
Qiao Dengjiang. The physics of fireball[J]. Progress in Physics., 1983, 3(2): 236-267 doi: 10.3321/j.issn:1000-0542.1983.02.004
|
[15] |
乔登江. 核爆炸物理概论[M]. 北京: 原子能出版社, 1988: 1-201
Qiao Dengjiang. Introduction to nuclear explosion physics[M]. Beijing: Atomic Energy Press, 1988: 1-201
|
[16] |
陈健华, 王心正, 谢龙生, 等. 均匀大气中的强爆炸一维辐射流体力学数值解[J]. 爆炸与冲击, 1981, 1(2): 37-49 doi: 10.11883/1001-1455(1981)02-0037-13
Chen Jianhua, Wang Xinzheng, Xie Longsheng, et al. An one-dimensional radiation hydrodynamic numerical solution for a strong explosion in uniform atmosphere[J]. Explosion and Shock Waves, 1981, 1(2): 37-49 doi: 10.11883/1001-1455(1981)02-0037-13
|
[17] |
Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
|
[18] |
吴健辉, 杨坤涛, 张南洋生. 核爆炸光辐射探测系统分析[J]. 光电工程, 2008, 35(9): 45-49 doi: 10.3969/j.issn.1003-501X.2008.09.010
Wu Jianhui, Yang Kuntao, Zhang Nanyangsheng. Analysis of the ray radiation detection system for nuclear explosion[J]. Opto-Electronic Engineering, 2008, 35(9): 45-49 doi: 10.3969/j.issn.1003-501X.2008.09.010
|
[19] |
吴健辉. 核爆炸光辐射特性及探测技术的理论与实验研究[D]. 武汉: 华中科技大学, 2009
Wu Jianhui. Study on theory and experiment of the characteristics and detection technology of nuclear explosion radiation[D]. Wuhan: Huazhong University of Science and Technology, 2009
|
[20] |
张欣, 王博宇, 李君, 等. 核爆炸光热辐射研究进展[J]. 现代应用物理, 2025, 16: 020101
Zhang Xin, Wang Boyu, Li Jun, et al. Research progress of nuclear explosion photo thermal radiation[J]. Modern Applied Physics, 2025, 16: 020101
|
[21] |
王学栋, 朱金辉, 左应红, 等. 复杂地形对核爆炸瞬发中子辐射场的影响[J]. 现代应用物理, 2023, 14: 030202
Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. Influence of complex terrain on prompt neutron radiation field of nuclear detonation[J]. Modern Applied Physics, 2023, 14: 030202
|
[22] |
Xiong Chen, Li Qiangsheng, Lu Xinzheng. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network[J]. Automation in Construction, 2020, 109: 102994. doi: 10.1016/j.autcon.2019.102994
|
[23] |
Wang Yixing, Yue Qingrui, Lu Xinzheng, et al. Digital twin approach for enhancing urban resilience: a cycle between virtual space and the real world[J]. Resilient Cities and Structures, 2024, 3(2): 34-45. doi: 10.1016/j.rcns.2024.06.002
|
[24] |
许鹏, 刘梦雅, 范新峰, 等. 人工智能算法在核应急中的应用综述[J]. 火箭军工程大学学报, 2024, 38(3): 104-110
Xu Peng, Liu Mengya, Fan Xinfeng, et al. Overview of application of artificial intelligence algorithms in nuclear emergency[J]. Journal of Rocket Force University of Engineering, 2024, 38(3): 104-110
|
[25] |
乔海亮, 谢海燕, 刘钰. 基于人工神经网络的HEMP-E1环境快速预测模型[J]. 现代应用物理, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011
Qiao Hailiang, Xie Haiyan, Liu Yu. A fast prediction model for HEMP-E1 environment based on artificial neural network[J]. Modern Applied Physics, 2025, 16: 011318 doi: 10.12061/j.issn.2095-6223.202501011
|
[26] |
赵静宜. 人工智能在高能物理领域的应用: 探索未知的利器[J]. 现代应用物理, 2025, 16: 011306
Zhao Jingyi. Application of artificial intelligence in high-energy physics: a powerful tool for exploring the unknown[J]. Modern Applied Physics, 2025, 16: 011306
|
[27] |
郑炀. 基于数据同化核爆炸放射性沾染预测方法研究[D]. 北京: 军事科学院, 2023
Zheng Yang. Prediction method of radioactive contamination in nuclear explosion based on data assimilation[D]. Beijing: Academy of Military Science, 2023
|
[28] |
Wang Bing, Chen Bingzhen, Zhao Jinsong. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models[J]. Journal of Hazardous Materials, 2015, 300: 433-442. doi: 10.1016/j.jhazmat.2015.07.028
|
[29] |
Ma Denglong, Zhang Zaoxiao. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere[J]. Journal of Hazardous Materials, 2016, 311: 237-245. doi: 10.1016/j.jhazmat.2016.03.022
|
[30] |
Wang Rongxiao, Chen Bin, Qiu Sihang, et al. Hazardous source estimation using an artificial neural network, particle swarm optimization and a simulated annealing algorithm[J]. Atmosphere, 2018, 9(4): 119. doi: 10.3390/atmos9040119
|
[31] |
Vaca-Rubio C J, Blanco L, Pereira R, et al. Kolmogorov-Arnold networks (KANs) for time series analysis[DB/OL]. arXiv preprint arXiv: 2405.08790, 2024.
|
[32] |
Bozorgasl Z, Chen Hao. Wav-KAN: wavelet Kolmogorov-Arnold networks[DB/OL]. arXiv preprint arXiv: 2405.12832, 2024.
|
[33] |
李晓菲, 李帆, 尹禄高, 等. 低空核爆炸环境效应模拟研究[J]. 强度与环境, 2022, 49(5): 48-55
Li Xiaofei, Li Fan, Yin Lugao, et al. Simulation study on low-altitude nuclear explosion environment effect[J]. Structure & Environment Engineering, 2022, 49(5): 48-55
|
[34] |
王东. 基于大气透射率和海表发射率的红外测量海表温度修正方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020
Wang Dong. Study on the correction method of infrared sea surface temperature measurement based on atmospheric transmittance and sea surface emissivity[D]. Harbin: Harbin Engineering University, 2020
|
[35] |
韩小祥, 李君, 张欣, 等. 核爆炸光辐射能量分布的模拟仿真研究[J]. 强激光与粒子束, 2024, 36: 076003 doi: 10.11884/HPLPB202436.230406
Han Xiaoxiang, Li Jun, Zhang Xin, et al. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 076003 doi: 10.11884/HPLPB202436.230406
|
[36] |
Kaul D C, Dolatshahi F, Egbert S D, et al. The development and testing of the air transport of radiation code version 6 (ATR6)[R]. DNA-TR-91-237, 1992.
|
[37] |
Liu Hao, Lei Jin, Ren Zhongzhou. From complexity to clarity: Kolmogorov-Arnold networks in nuclear binding energy prediction[DB/OL]. arXiv preprint arXiv: 2407.20737, 2024.
|
[38] |
Cheon M. Kolmogorov-Arnold network for satellite image classification in remote sensing[DB/OL]. arXiv preprint arXiv: 2406.00600, 2024.
|
[39] |
Amiri M H, Mehrabi Hashjin N, Montazeri M, et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm[J]. Scientific Reports, 2024, 14: 5032. doi: 10.1038/s41598-024-54910-3
|
[40] |
Wang Hongbin, Binti Mansor N N, Mokhlis H B. Novel hybrid optimization technique for solar photovoltaic output prediction using improved hippopotamus algorithm[J]. Applied Sciences, 2024, 14: 7803. doi: 10.3390/app14177803
|
[41] |
武益民, 张成良, 张焕雄. 基于河马算法优化BP神经网络的库坡变形预测研究[J/OL]. 水利水电技术(中英文), 2025: 1-23. (2025-03-17)[2025-04-09]. https://link.cnki.net/urlid/10.1746.tv.20250315.1157.006.
Wu Yimin, Zhang Chengliang, Zhang Huanxiong. Study on slope deformation prediction using BP neural network optimized by Hippo Algorithm[J/OL]. Water Resources and Hydropower Engineering, 2025: 1-23. (2025-03-17)[2025-04-09]. https://link.cnki.net/urlid/10.1746.tv.20250315.1157.006.
|