Citation: | Yang Xunwu, Lu Peng, Wang Shengzhe, et al. Design of dose simulation system for BNCT based on MeVisLab and OpenMC[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250246 |
[1] |
Moss R L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT)[J]. Applied Radiation and Isotopes, 2014, 88: 2-11. doi: 10.1016/j.apradiso.2013.11.109
|
[2] |
朱益楠, 林作康, 郁海燕, 等. 基于蒙特卡罗几何分裂减方差技巧的AB-BNCT治疗室屏蔽模拟分析[J]. 核技术, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415
Zhu Yinan, Lin Zuokang, Yu Haiyan, et al. Simulation analysis of AB-BNCT treatment room shielding based on Monte Carlo geometric splitting variance reduction technique[J]. Nuclear Techniques, 2025, 48: 010202 doi: 10.11889/j.0253-3219.2025.hjs.48.230415
|
[3] |
何泳成, 吴煊, 张玉亮, 等. BNCT02加速器机器保护系统设计[J]. 强激光与粒子束, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153
He Yongcheng, Wu Xuan, Zhang Yuliang, et al. Design of machine protection system for BNCT02 accelerator[J]. High Power Laser and Particle Beams, 2025, 37: 014002 doi: 10.11884/HPLPB202537.240153
|
[4] |
田永顺, 胡志良, 童剑飞, 等. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计[J]. 物理学报, 2018, 67: 142801 doi: 10.7498/aps.67.20180380
Tian Yongshun, Hu Zhiliang, Tong Jianfei, et al. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy[J]. Acta Physica Sinica, 2018, 67: 142801 doi: 10.7498/aps.67.20180380
|
[5] |
王勇泉, 王泽祯, 李宁, 等. 基于加速器的硼中子俘获治疗装置束流整形体的设计及其临床参数研究[J]. 原子能科学技术, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467
Wang Yongquan, Wang Zezhen, Li Ning, et al. Design of beam shaping assembly for accelerator-based boron neutron capture therapy and study on its clinical parameter[J]. Atomic Energy Science and Technology, 2022, 56(7): 1440-1447 doi: 10.7538/yzk.2021.youxian.0467
|
[6] |
鱼红亮, 郑传城, 孙亮. MCNP计算含肿瘤Snyder修正头部模型的硼中子俘获治疗剂量[J]. 原子能科学技术, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089
Yu Hongliang, Zheng Chuancheng, Sun Liang. Boron neutron capture therapy dose calculation for tumor modified Snyder head phantom using MCNP[J]. Atomic Energy Science and Technology, 2010, 44(1): 89-94 doi: 10.7538/yzk.2010.44.01.0089
|
[7] |
Spezi E, Lewis G. An overview of Monte Carlo treatment planning for radiotherapy[J]. Radiation Protection Dosimetry, 2008, 131(1): 123-129. doi: 10.1093/rpd/ncn277
|
[8] |
Nigg D W, Wemple C A, Wessol D E, et al. SERA—an advanced treatment planning system for neutron therapy and BNCT[J]. Transactions of the American Nuclear Society, 1999, 80: 66-67.
|
[9] |
Zamenhof R G, Clement S D, Harling O K, et al. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors[M]//Harling O K, Bernard J A, Zamenhof R F. Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. Boston: Springer, 1990: 283-305.
|
[10] |
Kumada H, Yamamoto K, Matsumura A, et al. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy[J]. Physics in Medicine & Biology, 2004, 49(15): 3353-3365.
|
[11] |
Lin T Y, Liu Y W H. Development and verification of THORplan—a BNCT treatment planning system for THOR[J]. Applied Radiation and Isotopes, 2011, 69(12): 1878-1881. doi: 10.1016/j.apradiso.2011.03.025
|
[12] |
Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 286-290.
|
[13] |
Hu N, Tanaka H, Kakino R, et al. Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system[J]. Radiation Oncology, 2021, 16(1): 243. doi: 10.1186/s13014-021-01968-2
|
[14] |
Chen Jiang, Teng Y C, Zhong Wanbing, et al. Development of Monte Carlo based treatment planning system for BNCT[J]. Journal of Physics: Conference Series, 2022, 2313: 012012. doi: 10.1088/1742-6596/2313/1/012012
|
[15] |
Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
|
[16] |
Boehler T, van Straaten D, Wirtz S, et al. A robust and extendible framework for medical image registration focused on rapid clinical application deployment[J]. Computers in Biology and Medicine, 2011, 41(6): 340-349. doi: 10.1016/j.compbiomed.2011.03.011
|
[17] |
赵攀, 陈义学, 林辉, 等. MCNP/MCNPX几何栅元划分方法对精确放疗剂量计算的影响研究[J]. 原子核物理评论, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040
Zhao Pan, Chen Yixue, Lin Hui, et al. Effect of different voxel-uniting methods on the dose calculation of MCNP/MCNPX[J]. Nuclear Physics Review, 2006, 23(2): 258-262 doi: 10.3969/j.issn.1007-4627.2006.02.040
|
[18] |
International Commission on Radiological Protection. Conversion coefficients for radiological protection quantities for external radiation exposures[R]. ICRP Publication 116, 2010: 1-257.
|
[19] |
郭鑫. 基于OpenMC的硼中子俘获治疗技术剂量计算方法研究[D]. 合肥: 合肥工业大学, 2024
Guo Xin. OpenMC-based dose calculation study of boron neutron capture therapy technology[D]. Hefei: Hefei University of Technology, 2024
|