Citation: | Chen Jun, Wu Shiyue, Song Wei, et al. Based on loofah-derived NiCo2O4/C composites for high-performance microwave absorption[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250259 |
[1] |
Wu Nannan, Hu Qian, Wei Renbo, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects[J]. Carbon, 2021, 176: 88-105. doi: 10.1016/j.carbon.2021.01.124
|
[2] |
Li Qi, Zhang Zheng, Qi Luping, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Advanced Science, 2019, 6: 1801057. doi: 10.1002/advs.201801057
|
[3] |
Gai Lixue, Zhao Honghong, Wang Fengyuan, et al. Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption[J]. Nano Research, 2022, 15(10): 9410-9439. doi: 10.1007/s12274-022-4695-6
|
[4] |
Huang Xinmeng, Liu Xuehua, Jia Zirui, et al. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1398-1412. doi: 10.1007/s42114-021-00304-2
|
[5] |
Zhang Feng, Jia Zirui, Zhou Jixi, et al. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption[J]. Chemical Engineering Journal, 2022, 450: 138205. doi: 10.1016/j.cej.2022.138205
|
[6] |
Cheng Yuanjing, Sun Xianxian, Yang Shuang, et al. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation[J]. Chemical Engineering Journal, 2023, 452: 139376. doi: 10.1016/j.cej.2022.139376
|
[7] |
Xiang Lele, Darboe A K, Luo Zhihong, et al. Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption[J]. Advanced Composites and Hybrid Materials, 2023, 6: 215. doi: 10.1007/s42114-023-00793-3
|
[8] |
Zhao Jia, Gu Zhe, Zhang Qingguo. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption[J]. Nano Research, 2024, 17(3): 1607-1615. doi: 10.1007/s12274-023-6090-3
|
[9] |
Lan Xiaolin, Wang Ran, Liu Wenbo, et al. Multicomponent synergistic flower-like FeS/hollow C fiber for tunable and efficient microwave absorption[J]. Chemical Engineering Journal, 2024, 485: 149238. doi: 10.1016/j.cej.2024.149238
|
[10] |
Shen Laifa, Che Qian, Li Hongsen, et al. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014, 24(18): 2630-2637. doi: 10.1002/adfm.201303138
|
[11] |
Liu Chenyu, Lin Zhan, Chen Chao, et al. Porous C/Ni composites derived from fluid coke for ultra-wide bandwidth electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2019, 366: 415-422. doi: 10.1016/j.cej.2019.02.082
|
[12] |
Mou Pengpeng, Zhao Jinchuan, Wang Guizhen, et al. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties[J]. Chemical Engineering Journal, 2022, 437: 135285. doi: 10.1016/j.cej.2022.135285
|
[13] |
Cheng Tingting, Guo Yuying, Xie Yuxin, et al. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance[J]. Carbon, 2023, 206: 181-191. doi: 10.1016/j.carbon.2023.02.052
|
[14] |
Dong Shun, Hu Peitao, Li Xiutao, et al. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption[J]. Chemical Engineering Journal, 2020, 398: 125588. doi: 10.1016/j.cej.2020.125588
|
[15] |
Huang Xiangbin, Wang Yanting, Lou Zhichao, et al. Porous, magnetic carbon derived from bamboo for microwave absorption[J]. Carbon, 2023, 209: 118005. doi: 10.1016/j.carbon.2023.118005
|
[16] |
Wang Lei, Huang Mengqiu, Yu Xuefeng, et al. MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber[J]. Nano-Micro Letters, 2020, 12: 150. doi: 10.1007/s40820-020-00488-0
|
[17] |
Cui Liru, Wang Yahui, Han Xijiang, et al. Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution[J]. Carbon, 2021, 174: 673-682. doi: 10.1016/j.carbon.2020.10.070
|
[18] |
Zhou Panpan, Zhang Jing, Song Zhi, et al. Defect engineering in N-doped OMC for lightweight and high-efficiency electromagnetic wave absorption[J]. Journal of Materiomics, 2024, 10(1): 190-199. doi: 10.1016/j.jmat.2023.05.008
|
[19] |
Wang Yanli, Wang Guangsheng, Zhang Xiaojuan, et al. Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading[J]. Journal of Materials Science & Technology, 2022, 103: 34-41.
|
[20] |
Lan Di, Qin Ming, Liu Jiaolong, et al. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications[J]. Chemical Engineering Journal, 2020, 382: 122797. doi: 10.1016/j.cej.2019.122797
|
[21] |
Zhang Hongxia, Shi Chuan, Jia Zirui, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 584: 382-394. doi: 10.1016/j.jcis.2020.09.122
|
[22] |
Liu Yue, Liu Xuehua, E Xinyu, et al. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption[J]. Journal of Materials Science & Technology, 2022, 103: 157-164.
|
[23] |
Wu Nannan, Liu Chang, Xu Dongmei, et al. Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples[J]. Journal of Materials Chemistry C, 2019, 7(6): 1659-1669. doi: 10.1039/C8TC04984J
|
[24] |
Du Hanying, Ren Jiaqi, Zhang Wenchao, et al. Ni nanoparticles in situ embedment in 3D ordered macro-/mesoporous carbon framework as efficient microwave absorption and infrared stealth materials[J]. Carbon, 2023, 204: 325-335. doi: 10.1016/j.carbon.2022.12.051
|
[25] |
Chang Ming, Jia Zirui, He Shuangqiao, et al. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability[J]. Composites Part B: Engineering, 2021, 225: 109306. doi: 10.1016/j.compositesb.2021.109306
|
[26] |
Su Qiang, He Yunfei, Liu Dongdong, et al. Facile fabrication of graphene/g-C3N4 for electromagnetic wave absorption[J]. Nano Research, 2024, 17(3): 1687-1698. doi: 10.1007/s12274-023-6231-z
|
[27] |
Wang Jiayao, Wang Yiqun, Jiang Rui, et al. Self-assembly of submillimeter porous structure on metal-organic framework to construct heterogeneous interface for controlling microwave absorption[J]. Materials Today Physics, 2023, 35: 101126. doi: 10.1016/j.mtphys.2023.101126
|
[28] |
Cheng Jie, Jiang Haojie, Cai Lei, et al. Porous N-doped C/VB-group VS2 composites derived from perishable garbage to synergistically solve the environmental and electromagnetic pollution[J]. Chemical Engineering Journal, 2023, 457: 141208. doi: 10.1016/j.cej.2022.141208
|