Citation: | Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment[J]. High Power Laser and Particle Beams, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269 |
[1] |
沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-Ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
|
[2] |
Aguiar Y Q D, Wrobel F, Autran J L, et al. Introduction to single-event effects[M]//De Aguiar Y Q, Wrobel F, Autran J L, et al. Single-Event Effects, from Space to Accelerator Environments: Analysis, Prediction and Hardening by Design. Cham: Springer, 2025: 29-47.
|
[3] |
Duzellier S. Radiation effects on electronic devices in space[J]. Aerospace Science and Technology, 2005, 9(1): 93-99. doi: 10.1016/j.ast.2004.08.006
|
[4] |
张艳文, 郭刚, 韩金华, 等. 质子单粒子试验技术及其应用[J]. 现代应用物理, 2024, 15: 040417
Zhang Yanwen, Guo Gang, Han Jinhua, et al. Proton single event effect testing technology and its application[J]. Modern Applied Physics, 2024, 15: 040417
|
[5] |
沈志强, 刘剑利, 陈启明, 等. 300 MeV质子重离子加速器及电子器件单粒子效应试验研究[J]. 现代应用物理, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418
Shen Zhiqiang, Liu Jianli, Chen Qiming, et al. 300 MeV proton and heavy ion accelerator and single event effects of electronic devices[J]. Modern Applied Physics, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418
|
[6] |
Ma Y Q, Yu T, Xu X H, et al. Comparative study of the single-event functional interrupt (SEFI) rate in solid-state drives (SSD) through ground and on-orbit testing[J]. Space Weather, 2025, 23: e2025SW004414. doi: 10.1029/2025SW004414
|
[7] |
Leach R. Spacecraft system failures and anomalies attributed to the natural space environment[C]//Space Programs and Technologies Conference. 1995.
|
[8] |
王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1): 1-8
Wang Changhe. The influence with reliability of motional satelliteby the single -event phenomena[J]. Semiconductor Information, 1998, 35(1): 1-8
|
[9] |
Ji Xinyan, Li Yunze, Liu Guoqing, et al. A brief review of ground and flight failures of Chinese spacecraft[J]. Progress in Aerospace Sciences, 2019, 107: 19-29. doi: 10.1016/j.paerosci.2019.04.002
|
[10] |
韩建伟, 陈睿, 李宏伟, 等. 单粒子效应及充放电效应诱发航天器故障的甄别与机理探讨[J]. 航天器环境工程, 2021, 38(3): 344-350
Han Jianwei, Chen Rui, Li Hongwei, et al. The anomalies supposed to be due to the single event effects may be caused by spacecraft charging induced electrostatic discharge[J]. Spacecraft Environment Engineering, 2021, 38(3): 344-350
|
[11] |
周飞, 李强, 信太林, 等. 空间辐射环境引起在轨卫星故障分析与加固对策[J]. 航天器环境工程, 2012, 29(4): 392-396
Zhou Fei, Li Qiang, Xin Tailin, et al. Analyses and countermeasures of in-orbit satellite failures caused by space radiation environment[J]. Spacecraft Environment Engineering, 2012, 29(4): 392-396
|
[12] |
Harrington R C, Kauppila J S, Warren K M, et al. Estimating single-event logic cross sections in advanced technologies[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2115-2121.
|
[13] |
尚琳, 刘晓娜, 曹彩霞, 等. 低轨互联网卫星在轨单粒子翻转分析及防护措施[J]. 航天器环境工程, 2021, 38(5): 503-507
Shang Lin, Liu Xiaona, Cao Caixia, et al. Analysis of in-orbit single event upset of low-Earth-orbit internet satellite and protection measures[J]. Spacecraft Environment Engineering, 2021, 38(5): 503-507
|
[14] |
Mai Ziqi, Zhu Xiang, Li Hongwei, et al. Experiment study of single event functional interrupt in analog-to-digital converters using a pulsed laser[J]. Electronics, 2023, 12: 2774. doi: 10.3390/electronics12132774
|
[15] |
Chen Junchao, Lange T, Andjelkovic M, et al. Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 564-580.
|
[16] |
Kottaras G, Sarris T, Psomoulis A, et al. A low-power, radiation-hardened single event effect rate detection system on a chip for real time monitoring of single event effects on low earth orbit satellites[C]//2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC). 2022: 1-6.
|
[17] |
马英起, 朱翔, 李宏伟, 等. 空间辐射环境危害综合监测原理样机研制[J]. 航天器环境工程, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014
Ma Yingqi, Zhu Xiang, Li Hongwei, et al. Development of a space radiation hazard monitor[J]. Spacecraft Environment Engineering, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014
|
[18] |
Zhang Binquan, Zhang Shenyi, Shen Guohong, et al. Monitor of the single event upsets and linear energy transfer of space radiation on the Beidou navigation satellites[J]. Open Astronomy, 2023, 32: 20220206. doi: 10.1515/astro-2022-0206
|
[19] |
Noeldeke C, Boettcher M, Mohr U, et al. Single event upset investigations on the “Flying Laptop” satellite mission[J]. Advances in Space Research, 2021, 67(6): 2000-2009. doi: 10.1016/j.asr.2020.12.032
|
[20] |
Katz S, Goldvais U, Price C. The connection between space weather and Single Event Upsets in polar low earth orbit satellites[J]. Advances in Space Research, 2021, 67(10): 3237-3249. doi: 10.1016/j.asr.2021.02.007
|
[21] |
侯建文, 张爱兵, 郑香脂, 等. FPGA单粒子翻转事件在轨探测研究[J]. 宇航学报, 2014, 35(4): 454-458
Hou Jianwen, Zhang Aibing, Zheng Xiangzhi, et al. Research on in-orbit detection of SEU of FPGA[J]. Journal of Astronautics, 2014, 35(4): 454-458
|
[22] |
Hansen D L, Resor S, Vermeire B, et al. Comparison of figure of merit calculations to on-orbit data[C]//2023 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2023 NSREC). 2023: 1-8.
|
[23] |
Wrobel F, Aguiar Y, Marques C, et al. An analytical approach to calculate soft error rate induced by atmospheric neutrons[J]. Electronics, 2023, 12(1): 104.
|
[24] |
He Wei, Li Jing, Zhou Yimin, et al. Study on an estimation method of on-orbit single event upset rate based on historical data[C]//2021 IEEE 4th International Conference on Electronics Technology (ICET). 2021: 1342-1346.
|
[25] |
Slayman C. JEDEC standards on measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors[M]//Nicolaidis M. Soft Errors in Modern Electronic Systems. New York: Springer, 2011: 55-76.
|
[26] |
张付强, 郭刚, 覃英参, 等. 质子单粒子效应引发卫星典型轨道下SRAM在轨错误率分析[J]. 航天器环境工程, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010
Zhang Fuqiang, Guo Gang, Qin Yingcan, et al. Prediction of proton-induced single event effect on SRAM’s in-orbit soft error rate on typical satellite orbit[J]. Spacecraft Environment Engineering, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010
|
[27] |
王会斌, 呼延奇, 郑悦, 等. 航天器空间辐射效应分析技术现状与思考[J]. 航天器环境工程, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015
Wang Huibin, Hu Yanqi, Zheng Yue, et al. The present situation of technologies for analysis of space radiation effects to spacecraft and some retrospection[J]. Spacecraft Environment Engineering, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015
|
[28] |
沈国红, 常峥, 张焕新, 等. 太阳同步轨道粒子辐射效应综合探测技术[J]. 北京大学学报自然科学版, 2025, 61(2): 379-387
Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection technology of particle radiation effects in solar synchronous orbit[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2025, 61(2): 379-387
|
[29] |
Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection of particle radiation effects on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket[J]. Atmosphere, 2024, 15: 705. doi: 10.3390/atmos15060705
|
[30] |
Wang Jieyi, Zhang Huanxin, Zhu Xinyu, et al. Analyzing measured evidence for inducing factors of SEU from in-flight data of NSSC-SPRECMI on OPUS CZ-4C[J]. IEEE Transactions on Nuclear Science, 2025, 72(2): 101-109. doi: 10.1109/TNS.2024.3522366
|
[31] |
Poivey C, Harboe-Sørensen R, Pinto M, et al. SEL and SEU in-flight data from memories on-board PROBA-II spacecraft[C]//2022 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2022 NSREC). 2022: 1-6.
|
[32] |
Quinn H, Graham P, Morgan K, et al. Flight experience of the Xilinx virtex-4[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2682-2690. doi: 10.1109/TNS.2013.2246581
|
[33] |
Pinto M, Sampaio J M, Arruda L, et al. CTTB memory test board single event effect geostationary in-flight data analysis[C]//2020 20th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2020: 1-6.
|
[34] |
国家卫星气象中心. 地磁暴强度等级[P]. 2015
National Satellite Meteorological Center. Classification of geomagnetic storm intensity[P]. 2015
|
[35] |
Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Dynamics of proton flux in the South Atlantic anomaly during the super geomagnetic storm in May 2024[J]. Journal of Geophysical Research: Space Physics, 2025, 130: e2024JA033536. doi: 10.1029/2024JA033536
|
[36] |
Zou Hong, Li Chenfang, Zong Qiugang, et al. Short-term variations of the inner radiation belt in the South Atlantic anomaly[J]. Journal of Geophysical Research: Space Physics, 2015, 120(6): 4475-4486. doi: 10.1002/2015JA021312
|
[37] |
陈洋, 邹鸿, 陈鸿飞, 等. 暴时内辐射带高能质子的损失和恢复机制探究[J]. 地球物理学报, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702
Chen Yang, Zou Hong, Chen Hongfei, et al. Study on the loss and recovery mechanisms of high-energy protons in the inner radiation belt during geomagnetic storms[J]. Chinese Journal of Geophysics, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702
|
[38] |
王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010
Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
|
[39] |
Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
|