Volume 37 Issue 10
Sep.  2025
Turn off MathJax
Article Contents
Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment[J]. High Power Laser and Particle Beams, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269
Citation: Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment[J]. High Power Laser and Particle Beams, 2025, 37: 106011. doi: 10.11884/HPLPB202537.250269

Study on characteristics of in-orbit SRAM single event upsets and their correlation with the space environment

doi: 10.11884/HPLPB202537.250269
  • Received Date: 2025-08-26
  • Accepted Date: 2025-09-13
  • Rev Recd Date: 2025-09-13
  • Available Online: 2025-09-20
  • Publish Date: 2025-10-15
  • Background
    The space radiation environment poses a critical threat to spacecraft electronics, with single-event upset (SEU) being one of the most representative transient radiation effects. Understanding the spatial distribution and driving mechanisms of SEUs is essential for improving radiation-hardened design and mission reliability.
    Purpose
    This study aims to systematically investigate the relationship between on-orbit SEUs and space environment parameters, and to quantify the contribution of high-energy protons to SEU occurrence.
    Methods
    On-orbit SEU monitoring data from static random-access memory (SRAM) devices were analyzed in conjunction with particle flux measurements, geomagnetic parameters, and proton energy spectra. The spatial distribution of SEUs was mapped in L-shell coordinates, and statistical correlation analysis was performed between the flux of protons at or above 10 MeV and on-orbit soft error rate (SER). Theoretical SER was calculated using ground-based proton irradiation cross sections and compared with observed values.
    Results
    A total of 97.5% of SEU events were concentrated within the South Atlantic Anomaly (SAA), with a peak at L ≈ 1.24−1.25, coinciding with enhanced the flux of protons at or above 10 MeV regions. A significant power-law correlation (R ≈ 0.73) was found between the flux of protons at or above 10 MeV and SER, confirming high-energy protons as the dominant driver of SEUs. The calculated SER agreed with observations within one order of magnitude but was systematically lower, indicating the need for extending the spectral range to improve prediction accuracy. No SEUs were detected during three minor solar proton events, while geomagnetic storms caused significant SER decreases due to proton flux depletion in the SAA.
    Conclusions
    This study systematically elucidates the spatial distribution characteristics and primary driving mechanisms of on-orbit SRAM SEUs, demonstrating that high-energy proton flux is the dominant contributor to SEU occurrence. These findings advance the understanding of space radiation effects and provide essential theoretical and experimental support for radiation effect modeling, radiation-hardened design, and mission reliability assessment.
  • loading
  • [1]
    沈国红, 张珅毅, 王春琴, 等. HXMT轨道空间辐射环境分析[J]. 现代应用物理, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606

    Shen Guohong, Zhang Shenyi, Wang Chunqin, et al. Analysis of space radiation exploration on hard X-Ray modulation telescope[J]. Modern Applied Physics, 2023, 14: 010606 doi: 10.12061/j.issn.2095-6223.2023.010606
    [2]
    Aguiar Y Q D, Wrobel F, Autran J L, et al. Introduction to single-event effects[M]//De Aguiar Y Q, Wrobel F, Autran J L, et al. Single-Event Effects, from Space to Accelerator Environments: Analysis, Prediction and Hardening by Design. Cham: Springer, 2025: 29-47.
    [3]
    Duzellier S. Radiation effects on electronic devices in space[J]. Aerospace Science and Technology, 2005, 9(1): 93-99. doi: 10.1016/j.ast.2004.08.006
    [4]
    张艳文, 郭刚, 韩金华, 等. 质子单粒子试验技术及其应用[J]. 现代应用物理, 2024, 15: 040417

    Zhang Yanwen, Guo Gang, Han Jinhua, et al. Proton single event effect testing technology and its application[J]. Modern Applied Physics, 2024, 15: 040417
    [5]
    沈志强, 刘剑利, 陈启明, 等. 300 MeV质子重离子加速器及电子器件单粒子效应试验研究[J]. 现代应用物理, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418

    Shen Zhiqiang, Liu Jianli, Chen Qiming, et al. 300 MeV proton and heavy ion accelerator and single event effects of electronic devices[J]. Modern Applied Physics, 2024, 15: 040418 doi: 10.12061/j.issn.2095-6223.2024.040418
    [6]
    Ma Y Q, Yu T, Xu X H, et al. Comparative study of the single-event functional interrupt (SEFI) rate in solid-state drives (SSD) through ground and on-orbit testing[J]. Space Weather, 2025, 23: e2025SW004414. doi: 10.1029/2025SW004414
    [7]
    Leach R. Spacecraft system failures and anomalies attributed to the natural space environment[C]//Space Programs and Technologies Conference. 1995.
    [8]
    王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1): 1-8

    Wang Changhe. The influence with reliability of motional satelliteby the single -event phenomena[J]. Semiconductor Information, 1998, 35(1): 1-8
    [9]
    Ji Xinyan, Li Yunze, Liu Guoqing, et al. A brief review of ground and flight failures of Chinese spacecraft[J]. Progress in Aerospace Sciences, 2019, 107: 19-29. doi: 10.1016/j.paerosci.2019.04.002
    [10]
    韩建伟, 陈睿, 李宏伟, 等. 单粒子效应及充放电效应诱发航天器故障的甄别与机理探讨[J]. 航天器环境工程, 2021, 38(3): 344-350

    Han Jianwei, Chen Rui, Li Hongwei, et al. The anomalies supposed to be due to the single event effects may be caused by spacecraft charging induced electrostatic discharge[J]. Spacecraft Environment Engineering, 2021, 38(3): 344-350
    [11]
    周飞, 李强, 信太林, 等. 空间辐射环境引起在轨卫星故障分析与加固对策[J]. 航天器环境工程, 2012, 29(4): 392-396

    Zhou Fei, Li Qiang, Xin Tailin, et al. Analyses and countermeasures of in-orbit satellite failures caused by space radiation environment[J]. Spacecraft Environment Engineering, 2012, 29(4): 392-396
    [12]
    Harrington R C, Kauppila J S, Warren K M, et al. Estimating single-event logic cross sections in advanced technologies[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2115-2121.
    [13]
    尚琳, 刘晓娜, 曹彩霞, 等. 低轨互联网卫星在轨单粒子翻转分析及防护措施[J]. 航天器环境工程, 2021, 38(5): 503-507

    Shang Lin, Liu Xiaona, Cao Caixia, et al. Analysis of in-orbit single event upset of low-Earth-orbit internet satellite and protection measures[J]. Spacecraft Environment Engineering, 2021, 38(5): 503-507
    [14]
    Mai Ziqi, Zhu Xiang, Li Hongwei, et al. Experiment study of single event functional interrupt in analog-to-digital converters using a pulsed laser[J]. Electronics, 2023, 12: 2774. doi: 10.3390/electronics12132774
    [15]
    Chen Junchao, Lange T, Andjelkovic M, et al. Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 564-580.
    [16]
    Kottaras G, Sarris T, Psomoulis A, et al. A low-power, radiation-hardened single event effect rate detection system on a chip for real time monitoring of single event effects on low earth orbit satellites[C]//2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC). 2022: 1-6.
    [17]
    马英起, 朱翔, 李宏伟, 等. 空间辐射环境危害综合监测原理样机研制[J]. 航天器环境工程, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014

    Ma Yingqi, Zhu Xiang, Li Hongwei, et al. Development of a space radiation hazard monitor[J]. Spacecraft Environment Engineering, 2019, 36(1): 89-94 doi: 10.12126/see.2019.01.014
    [18]
    Zhang Binquan, Zhang Shenyi, Shen Guohong, et al. Monitor of the single event upsets and linear energy transfer of space radiation on the Beidou navigation satellites[J]. Open Astronomy, 2023, 32: 20220206. doi: 10.1515/astro-2022-0206
    [19]
    Noeldeke C, Boettcher M, Mohr U, et al. Single event upset investigations on the “Flying Laptop” satellite mission[J]. Advances in Space Research, 2021, 67(6): 2000-2009. doi: 10.1016/j.asr.2020.12.032
    [20]
    Katz S, Goldvais U, Price C. The connection between space weather and Single Event Upsets in polar low earth orbit satellites[J]. Advances in Space Research, 2021, 67(10): 3237-3249. doi: 10.1016/j.asr.2021.02.007
    [21]
    侯建文, 张爱兵, 郑香脂, 等. FPGA单粒子翻转事件在轨探测研究[J]. 宇航学报, 2014, 35(4): 454-458

    Hou Jianwen, Zhang Aibing, Zheng Xiangzhi, et al. Research on in-orbit detection of SEU of FPGA[J]. Journal of Astronautics, 2014, 35(4): 454-458
    [22]
    Hansen D L, Resor S, Vermeire B, et al. Comparison of figure of merit calculations to on-orbit data[C]//2023 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2023 NSREC). 2023: 1-8.
    [23]
    Wrobel F, Aguiar Y, Marques C, et al. An analytical approach to calculate soft error rate induced by atmospheric neutrons[J]. Electronics, 2023, 12(1): 104.
    [24]
    He Wei, Li Jing, Zhou Yimin, et al. Study on an estimation method of on-orbit single event upset rate based on historical data[C]//2021 IEEE 4th International Conference on Electronics Technology (ICET). 2021: 1342-1346.
    [25]
    Slayman C. JEDEC standards on measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors[M]//Nicolaidis M. Soft Errors in Modern Electronic Systems. New York: Springer, 2011: 55-76.
    [26]
    张付强, 郭刚, 覃英参, 等. 质子单粒子效应引发卫星典型轨道下SRAM在轨错误率分析[J]. 航天器环境工程, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010

    Zhang Fuqiang, Guo Gang, Qin Yingcan, et al. Prediction of proton-induced single event effect on SRAM’s in-orbit soft error rate on typical satellite orbit[J]. Spacecraft Environment Engineering, 2018, 35(4): 365-370 doi: 10.12126/j.issn.1673-1379.2018.04.010
    [27]
    王会斌, 呼延奇, 郑悦, 等. 航天器空间辐射效应分析技术现状与思考[J]. 航天器环境工程, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015

    Wang Huibin, Hu Yanqi, Zheng Yue, et al. The present situation of technologies for analysis of space radiation effects to spacecraft and some retrospection[J]. Spacecraft Environment Engineering, 2022, 39(4): 427-435 doi: 10.12126/see.2022.04.015
    [28]
    沈国红, 常峥, 张焕新, 等. 太阳同步轨道粒子辐射效应综合探测技术[J]. 北京大学学报自然科学版, 2025, 61(2): 379-387

    Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection technology of particle radiation effects in solar synchronous orbit[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2025, 61(2): 379-387
    [29]
    Shen Guohong, Chang Zheng, Zhang Huanxin, et al. Comprehensive detection of particle radiation effects on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket[J]. Atmosphere, 2024, 15: 705. doi: 10.3390/atmos15060705
    [30]
    Wang Jieyi, Zhang Huanxin, Zhu Xinyu, et al. Analyzing measured evidence for inducing factors of SEU from in-flight data of NSSC-SPRECMI on OPUS CZ-4C[J]. IEEE Transactions on Nuclear Science, 2025, 72(2): 101-109. doi: 10.1109/TNS.2024.3522366
    [31]
    Poivey C, Harboe-Sørensen R, Pinto M, et al. SEL and SEU in-flight data from memories on-board PROBA-II spacecraft[C]//2022 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2022 NSREC). 2022: 1-6.
    [32]
    Quinn H, Graham P, Morgan K, et al. Flight experience of the Xilinx virtex-4[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2682-2690. doi: 10.1109/TNS.2013.2246581
    [33]
    Pinto M, Sampaio J M, Arruda L, et al. CTTB memory test board single event effect geostationary in-flight data analysis[C]//2020 20th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2020: 1-6.
    [34]
    国家卫星气象中心. 地磁暴强度等级[P]. 2015

    National Satellite Meteorological Center. Classification of geomagnetic storm intensity[P]. 2015
    [35]
    Xu Xiaoheng, Ma Yingqi, Zhang Longlong, et al. Dynamics of proton flux in the South Atlantic anomaly during the super geomagnetic storm in May 2024[J]. Journal of Geophysical Research: Space Physics, 2025, 130: e2024JA033536. doi: 10.1029/2024JA033536
    [36]
    Zou Hong, Li Chenfang, Zong Qiugang, et al. Short-term variations of the inner radiation belt in the South Atlantic anomaly[J]. Journal of Geophysical Research: Space Physics, 2015, 120(6): 4475-4486. doi: 10.1002/2015JA021312
    [37]
    陈洋, 邹鸿, 陈鸿飞, 等. 暴时内辐射带高能质子的损失和恢复机制探究[J]. 地球物理学报, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702

    Chen Yang, Zou Hong, Chen Hongfei, et al. Study on the loss and recovery mechanisms of high-energy protons in the inner radiation belt during geomagnetic storms[J]. Chinese Journal of Geophysics, 2016, 59(7): 2344-2355 doi: 10.6038/cjg20160702
    [38]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [39]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (113) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return