Volume 37 Issue 11
Sep.  2025
Turn off MathJax
Article Contents
Hu Jun, Li Rongming. Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis[J]. High Power Laser and Particle Beams, 2025, 37: 113028. doi: 10.11884/HPLPB202537.250275
Citation: Hu Jun, Li Rongming. Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis[J]. High Power Laser and Particle Beams, 2025, 37: 113028. doi: 10.11884/HPLPB202537.250275

Design of wideband patch antenna array optimized by Tabu algorithm and performance analysis

doi: 10.11884/HPLPB202537.250275
  • Received Date: 2025-08-29
  • Accepted Date: 2025-10-09
  • Rev Recd Date: 2025-10-09
  • Available Online: 2025-10-21
  • Publish Date: 2025-11-15
  • Background
    Modern satellite communication systems demand wideband operation and adaptable beam coverage, particularly in the Ku-band.
    Purpose
    This study aims to design a dual-band patch antenna covering 11.45–11.7 GHz and 12.25–12.75 GHz and to enhance its system-level performance through array analysis and beamwidth optimization.
    Methods
    A dual-layer patch structure and feeding network are optimized to achieve impedance matching. A 10×10 array is constructed, and its equivalent isotropic radiated power (EIRP) and G/T are evaluated. A phase weighting method based on the Tabu algorithm is applied to broaden the beamwidth.
    Results
    The antenna achieves S11≤–20 dB in the target bands and S11≤–15 dB across 11–13 GHz. The array exhibits satisfactory EIRP and G/T values. The beamwidth is expanded to 1.8 times that of a conventional uniform array.
    Conclusions
    The proposed design meets the requirements of Ku-band satellite communications in terms of bandwidth and beam adjustability, offering an effective solution for optimising antenna performance in complex electromagnetic environments.
  • loading
  • [1]
    Fan Tianqi, Jiang Botao, Liu Ruizhi, et al. A novel double U-slot microstrip patch antenna design for low-profile and broad bandwidth applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2543-2549. doi: 10.1109/TAP.2021.3125382
    [2]
    Khan M, Chowdhury M. Analysis of modal excitation in wideband slot-loaded microstrip patch antenna using theory of characteristic modes[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7618-7623. doi: 10.1109/TAP.2020.2989867
    [3]
    Uluslu A. Chameleon swarm algorithm assisted optimization of U-slot patch antenna for quad-band applications[J]. IEEE Access, 2022, 10: 74152-74163. doi: 10.1109/ACCESS.2022.3190378
    [4]
    Kim Y B, Kim J W, Lee H L. Low profile multi-slot loaded antenna with enhanced gain-to-volume ratio and efficiency[J]. IEEE Access, 2020, 8: 225407-225415. doi: 10.1109/ACCESS.2020.3044611
    [5]
    Ding Zhuofu, Xiao Shaoqiu, Xiao Runjun. A Ku-band, compact, polarization-reconfigurable, multilayered, wideband antenna: a proposed design with high mechanical stability[J]. IEEE Antennas and Propagation Magazine, 2020, 62(1): 23-33. doi: 10.1109/MAP.2019.2943340
    [6]
    Maman L, Zach S, Boag A. Beam shaping by phase-only waveform encoding for transmitting array antennas in radar applications[J]. IEEE Open Journal of Antennas and Propagation, 2025, 6(2): 478-486. doi: 10.1109/OJAP.2025.3529505
    [7]
    Xu Huansong, Liang Zhixi, Li Yuanxin, et al. A high-gain microstrip magnetic dipole antenna utilizing slot-loaded high-order mode for WLAN applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9130-9138. doi: 10.1109/TAP.2022.3191425
    [8]
    Chen Jiangcheng, Berg M, Rasilainen K, et al. Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11277-11292. doi: 10.1109/TAP.2022.3209217
    [9]
    Latha T, Ram G, Gande A K, et al. Compact wideband e-slotted e-shaped patch antenna for Ku-band phased array applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5596-5603. doi: 10.1109/TAES.2024.3374275
    [10]
    Liu Pengfei, Zhu Xiaowei, Zhang Yan, et al. Patch antenna loaded with paired shorting pins and H-shaped slot for 28/38 GHz dual-band MIMO applications[J]. IEEE Access, 2020, 8: 23705-23712. doi: 10.1109/ACCESS.2020.2964721
    [11]
    Sun Guanghua, Wong H. C-shaped open slot antenna array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8426-8435. doi: 10.1109/TAP.2021.3090844
    [12]
    Banerjee R, Sharma S K, Waldstein S W, et al. A 22-28 GHz polarization-reconfigurable flat-panel 8× 8 Tx/Rx phased array antenna with uniquely arranged novel radiating elements for CubeSat communication[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(5): 4138-4152. doi: 10.1109/TAP.2023.3249820
    [13]
    Fenech H, Amos S, Tomatis A, et al. High throughput satellite systems: an analytical approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 192-202. doi: 10.1109/TAES.2014.130450
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (88) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return