Turn off MathJax
Article Contents
Liu Zhenjun, Hao Jianhong, Xue Bixi, et al. Effects of different geomagnetic field models on the motion of high-energy charged particles in space[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250049
Citation: Liu Zhenjun, Hao Jianhong, Xue Bixi, et al. Effects of different geomagnetic field models on the motion of high-energy charged particles in space[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250049

Effects of different geomagnetic field models on the motion of high-energy charged particles in space

doi: 10.11884/HPLPB202638.250049
  • Received Date: 2025-03-19
  • Accepted Date: 2025-08-28
  • Rev Recd Date: 2025-10-28
  • Available Online: 2025-11-15
  • Background
    The motion and trapping of high-energy charged particles in the radiation belts are significantly influenced by the structure of Earth's magnetic field. Utilizing different geomagnetic models in simulations can lead to varying understandings of particle loss mechanisms in artificial radiation belts.
    Purpose
    This study aims to simulate and compare the trajectories and loss processes of 10 MeV electrons injected at different longitudes and L-values under the centered dipole, eccentric dipole, and International Geomagnetic Reference Field (IGRF) models, to elucidate the influence of geomagnetic field models on particle trapping and loss, particularly within the South Atlantic Anomaly (SAA) region.
    Methods
    The particle loss processes during injection were simulated using the MAGNETOCOSMIC program within the Geant4 Monte Carlo software. Simulations were conducted for 10 MeV electrons at various longitudes and L-values. The trajectories, loss cone angles, and trapping conditions were analyzed and compared among the three geomagnetic models.
    Results
    The centered dipole model yielded relatively regular and symmetric electron drift trajectories. asymmetry was observed in the eccentric dipole model. The IGRF model produced the most complex and irregular trajectories, best reflecting the actual variability of Earth's magnetic field. Regarding the relationship between loss cone angle and L-value, the IGRF model exhibited the largest loss cone angles, indicating the most stringent conditions for particle trapping. Furthermore, injection longitude significantly influenced loss processes, with electrons approaching the center of the SAA being most susceptible to drift loss.
    Conclusions
    The choice of geomagnetic model critically impacts the simulation of particle dynamics in artificial radiation belts. The IGRF model, offering the most detailed field representation, predicts the strictest trapping conditions and most realistic loss patterns, especially within the SAA. These findings enhance the understanding of particle trapping mechanisms and are significant for space environment research and applications.
  • loading
  • [1]
    王建行, 项正, 马新, 等. 基于范艾伦卫星观测数据的地球辐射带电子能谱分布的统计分析[J]. 空间科学学报, 2024, 44(3): 446-457 doi: 10.11728/cjss2024.03.2023-0070

    Wang Jianhang, Xiang Zheng, Ma Xin, et al. Statistical analysis of distributions of electron energy spectra in the earth’s radiation belts based on van Allen probes observations[J]. Chinese Journal of Space Science, 2024, 44(3): 446-457 doi: 10.11728/cjss2024.03.2023-0070
    [2]
    沈超, 刘振兴. 外辐射带动态演化的粒子模拟研究[J]. 空间科学学报, 2001, 21(3): 230-237 doi: 10.11728/cjss2001.03.20010305

    Shen Chao, Liu Zhenxing. Particle simulation on the dynamical evolution of radiation belt particles[J]. Chinese Journal of Space Science, 2001, 21(3): 230-237 doi: 10.11728/cjss2001.03.20010305
    [3]
    孙晓婧, 林瑞淋, 刘四清, 等. 地磁场结构对静止轨道≥2 MeV高能电子分布的影响[J]. 地球物理学报, 2020, 63(10): 3604-3625

    Sun Xiaojing, Lin Ruilin, Liu Siqing, et al. Influence of geomagnetic field structure on ≥2 MeV electron distribution at the geostationary orbit[J]. Chinese Journal of Geophysics, 2020, 63(10): 3604-3625
    [4]
    贾向红, 邹鸿, 许峰, 等. 中能电子成像仪探头的设计[J]. 强激光与粒子束, 2015, 27: 014005 doi: 10.3788/HPLPB20152701.14005

    Jia Xianghong, Zou Hong, Xu Feng, et al. Detector design of medium-energy electron imaging[J]. High Power Laser and Particle Beams, 2015, 27: 014005 doi: 10.3788/HPLPB20152701.14005
    [5]
    Huang Jinbei, Lyu Xingzhi, Tu Weichao, et al. Modeling the effects of drift orbit bifurcation on the magnetopause shadowing loss of radiation belt electrons[J]. Geophysical Research Letters, 2023, 50: e2023GL106359. doi: 10.1029/2023GL106359
    [6]
    Daly E J, Lemaire J, Heynderickx D, et al. Problems with models of the radiation belts[J]. IEEE Transactions on Nuclear Science, 1996, 43(2): 403-415. doi: 10.1109/23.490889
    [7]
    傅承义, 陈运泰, 祁贵仲. 地球物理学基础[M]. 北京: 科学出版社, 1985: 246-250

    Fu Chengyi, Chen Yuntai, Qi Guizhong. Fundamentals of geophysics[M]. Beijing: Science Press, 1985: 246-250
    [8]
    陈文磊, 谢伦. >0.3 MeV高能电子注入辐射带槽区事件的分析与预报[J]. 地球物理学报, 2010, 53(12): 2796-2804

    Chen Wenlei, Xie Lun. The analysis and forecast of the penetration of >0.3 MeV electrons to the slot region in radiation belt[J]. Chinese Journal of Geophysics, 2010, 53(12): 2796-2804
    [9]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101
    [10]
    董顺成, 郭芳侠. 带电粒子在地磁场中的运动及Mathematica数值模拟[J]. 大学物理, 2023, 42(7): 53-60

    Dong Shuncheng, Guo Fangxia. Motion of charged particles in earth’s magnetic field and Mathematica numerical simulation[J]. College Physics, 2023, 42(7): 53-60
    [11]
    方晓华, 濮祖荫. 漂移壳追踪方法与内辐射带的长期变化[J]. 空间科学学报, 2000, 20(2): 150-158 doi: 10.11728/cjss2000.02.150

    Fang Xiaohua, Pu Zuyin. Drift shell tracing method and the secular variation of inner radiation fluxes[J]. Chinese Journal of Space Science, 2000, 20(2): 150-158 doi: 10.11728/cjss2000.02.150
    [12]
    Badhwar G D, Konradi A. Conversion of omnidirectional proton fluxes into a pitch angle distribution[J]. Journal of Spacecraft and Rockets, 1990, 27(3): 350-352. doi: 10.2514/3.26148
    [13]
    Bortnik J, Inan U S, Bell T F. L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves[J]. Journal of Geophysical Research: Space Physics, 2002, 107: 1150.
    [14]
    Selesnick R S, Blake J B, Mewaldt R A. Atmospheric losses of radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2003, 108: 1468.
    [15]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [16]
    Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [17]
    张俊杰, 彭国良, 任泽平. 高空核爆炸早期碎片等离子体模拟[J]. 现代应用物理, 2023, 14: 020401

    Zhang Junjie, Peng Guoliang, Ren Zeping. Plasma simulation for early-stage debris in high altitude nuclear explosions[J]. Modern Applied Physics, 2023, 14: 020401
    [18]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [19]
    Wang Jianguo, Zhang Dianhui, Liu Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Physics of Plasmas, 2009, 16: 033108. doi: 10.1063/1.3091931
    [20]
    顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physica Sinica, 2009, 58(8): 5871-5878 doi: 10.7498/aps.58.5871
    [21]
    Cunningham G S, Cowee M M. Incorporation of drift loss cone effects on the trapping of an artificial radiation belt into LANL's modeling capability[J]. Journal of Radiation Effects: Research and Engineering, 2017, 35(1): 45-50.
    [22]
    Allison J, Amako K, Apostolakis J, et al. Recent developments in GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225.
    [23]
    Da Pieve F D, Koval N, Gu B, et al. Fundamentals of Monte Carlo particle transport and synergies with quantum dynamics for applications in ion-irradiated materials in Space and radiobiology[M]//Apostolova T, Kohanoff J, Medvedev N, et al. Tools for Investigating Electronic Excitation: Experiment and Multi-Scale Modelling. Madrid: Universidad Politécnica de Madrid, 2021: 345-374.
    [24]
    Tsyganenko N A. Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels[J]. Planetary and Space Science, 1987, 35(11): 1347-1358. doi: 10.1016/0032-0633(87)90046-8
    [25]
    Thébault E, Finlay C C, Beggan C D, et al. International Geomagnetic Reference Field: the 12th generation[J]. Earth, Planets and Space, 2015, 67: 79. doi: 10.1186/s40623-015-0228-9
    [26]
    王春琴, 王世金, 朱光武, 等. 辐射带SAA区带电粒子环境中长期变化分析[C]//中国空间科学学会空间探测专业委员会第十六次学术会议论文集. 2003: 235-240

    Wang Chunqin, Wang Shijin, Zhu Guangwu, et al. Analysis of the medium- and long-term variations of the charged particle environment in the SAA region of the radiation belt[C]//Academic Conference of the Space Exploration Professional Committee of the Chinese Society of Space Research. 2003: 235-240
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (21) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return