Turn off MathJax
Article Contents
Li Jinshuai, Bao Mingming, Xu Yong, et al. Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250209
Citation: Li Jinshuai, Bao Mingming, Xu Yong, et al. Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250209

Research on Magnetron Injection Gun with Curved Cathode for Megawatt-class Gyrotron Traveling Wave Tube

doi: 10.11884/HPLPB202638.250209
  • Received Date: 2025-07-14
  • Accepted Date: 2025-10-28
  • Rev Recd Date: 2025-11-03
  • Available Online: 2025-11-15
  • Background
    Gyrotron traveling wave tube (Gyro-TWT) is a vacuum electronic device with broad application prospects. Magnetron injection gun (MIG) is one of the core components of gyro-TWT, and its performance directly determines the success or failure of gyro-TWT. From the current research results on MIGs at home and abroad, it can be seen that the working voltage and current of existing MIGs are mostly low, and the velocity spread is generally high, which cannot meet the requirements of future megawatt-class gyro-TWT for MIG.
    Purpose
    In order to meet the requirement for MIG with high voltage, high current, and low electron beam velocity spread in the development of megawatt-class high-power gyro-TWT, this paper presents a novel design scheme for a single anode electron gun.
    Methods
    The novel electron gun scheme introduces a curved cathode structure to reduce the velocity spread of the electron beam, while effectively increasing the cathode emission band area and reducing the cathode emission density.
    Results
    The results of PIC simulation show that under the working conditions of 115 kV and 43 A, the designed electron gun has a transverse to longitudinal velocity ratio of 1.05, a velocity spread of 1.63%, and a guiding center radius of 3.41 mm. The thermal analysis results indicate that the MIG can heat the cathode to 1050 ℃ at a power of 76 W.
    Conclusions
    The simulation and thermal analysis results indicate that the designed MIG meets the design expectations and satisfies the requirements of high voltage, high current, and low electron beam velocity spread for megawatt level gyro-TWT.
  • loading
  • [1]
    Xu Yong, Mao Ya, Wang Weijie, et al. Proof-of-principle experiment of a 20-kW-average-power Ka-band gyro-traveling wave tube with a cut-off waveguide section[J]. IEEE Electron Device Letters, 2020, 41(5): 769-772. doi: 10.1109/LED.2020.2979629
    [2]
    薛智浩, 刘濮鲲, 杜朝海. Ka波段螺旋波纹波导回旋行波管[J]. 强激光与粒子束, 2012, 24(5): 1013-1014 doi: 10.3788/HPLPB20122405.1013

    Xue Zhihao, Liu Pukun, Du Chaohai. Linear calculation of Ka-band gyro-TWT with helical waveguide[J]. High Power Laser and Particle Beams, 2012, 24(5): 1013-1014 doi: 10.3788/HPLPB20122405.1013
    [3]
    Zhang Minghao, Wei Yanyu, Yue Lingna, et al. A research of 140-GHz folded rectangular groove waveguide traveling-wave tube[J]. Chinese Journal of Electronics, 2015, 24(4): 873-876. doi: 10.1049/cje.2015.10.035
    [4]
    安晨翔, 周宁, 陈坤, 等. 220 GHz共焦波导回旋行波管放大器衍射损耗率分析[J]. 强激光与粒子束, 2025, 37: 093003

    An Chenxiang, Zhou Ning, Chen Kun, et al. Analysis of reasonable diffraction loss rate in 220 GHz confocal waveguide gyro-TWT amplifier[J]. High Power Laser and Particle Beams, 2025, 37: 093003
    [5]
    Cao Yingjian, Wang Yu, Liu Guo, et al. High-power multifrequency radiation source based on gyro-TWT with external coupling feedback[J]. IEEE Transactions on Plasma Science, 2024, 52(5): 1654-1660. doi: 10.1109/TPS.2024.3400219
    [6]
    Hu Peng, Guo Jun, Sun Dimin, et al. Design and experiment of an X-band high-efficiency gyro-TWT demonstrating 100-kW 1-second long-pulse radiations[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2712-2718. doi: 10.1109/TED.2022.3217114
    [7]
    Wang Jianxun, Luo Yong, Luhmann N C. The simulation of a high-power low-velocity-spread space-charge-limited (SCL) cusp gun[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3356-3362. doi: 10.1109/TPS.2010.2085090
    [8]
    Samsonov S V, Leshcheva K A, Manuilov V N. Multitube helical-waveguide gyrotron traveling-wave amplifier: device concept and electron-optical system modeling[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3385-3390. doi: 10.1109/TED.2020.3001491
    [9]
    Jiang Wei, Lu Chaoxuan, Liu Yunpeng, et al. Investigation of a multibeam magnetron injection gun for a w-band sectorial-tunnel gyro-TWT[J]. IEEE Transactions on Electron Devices, 2021, 68(10): 5211-5214. doi: 10.1109/TED.2021.3102889
    [10]
    Dong Kun, Luo Yong, Li Hao, et al. Design of a novel MIG for a 140-GHz 2-kW confocal gyrotron traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3832-3836. doi: 10.1109/TED.2015.2477356
    [11]
    Akash, Thottappan M. Design and efficiency enhancement studies of periodically dielectric loaded W-band gyro-TWT amplifier[J]. IEEE Transactions on Electron Devices, 2020, 67(7): 2925-2932. doi: 10.1109/TED.2020.2996191
    [12]
    Dai Boxin, Jiang Wei, Han Binyang, et al. Investigation of a magnetron injection gun with an external anode for Ka-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2025, 72(3): 1448-1454. doi: 10.1109/TED.2025.3534181
    [13]
    Jiang Wei, Liu Yunpeng, Lu Chaoxuan, et al. Design and analysis of a diode magnetron injection gun for a G-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1429-1434. doi: 10.1109/TED.2022.3144649
    [14]
    王威. K波段双模回旋行波管电子枪研究[D]. 成都: 电子科技大学, 2024: 12-15

    Wang Wei. Research on dual mode electron gun for K band Gyro-TWT[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 12-15
    [15]
    安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001

    An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001
    [16]
    Xue Cun, Wang Qingyu, Ren Hanxi, et al. Case studies on time-dependent Ginzburg-Landau simulations for superconducting applications[J]. Electromagnetic Science, 2024, 2(2): 1-20.
    [17]
    董坤, 罗勇, 蒋伟, 等. W波段回旋行波管新型曲线阴极磁控注入电子枪优化设计[J]. 红外与毫米波学报, 2016, 35(4): 483-487,495

    Dong Kun, Luo Yong, Jiang Wei, et al. Optimal design of a novel magnetron injection gun with curved emitter for a W-band gyrotron traveling wave tube[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 483-487,495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (24) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return