Turn off MathJax
Article Contents
Zhao Peng, Wang Zhengyang, Wu hao, et al. Semi-resolved function research on gas-solid two-phase coupling of high-temperature pebble beds[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250238
Citation: Zhao Peng, Wang Zhengyang, Wu hao, et al. Semi-resolved function research on gas-solid two-phase coupling of high-temperature pebble beds[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250238

Semi-resolved function research on gas-solid two-phase coupling of high-temperature pebble beds

doi: 10.11884/HPLPB202638.250238
  • Received Date: 2025-07-25
  • Accepted Date: 2025-10-28
  • Rev Recd Date: 2025-11-06
  • Available Online: 2025-11-15
  • Background
    Accurately simulating the gas-solid coupled heat transfer in high-temperature pebble-bed reactors is challenging due to the complex configuration involving tens of thousands of fuel pebbles. Conventional unresolved CFD-DEM methods are limited in accuracy by their requirement for coarse fluid grids, whereas fully resolved simulations are often prohibitively expensive.
    Purpose
    This study aims to develop a semi-resolved function model suitable for fine fluid grids to enable accurate and efficient coupled thermal-fluid simulation in pebble beds.
    Method
    A Gaussian kernel-based semi-resolved function was introduced to smooth physical properties around particles and compute interphase forces via weighted averaging. The key parameter, the dimensionless diffusion time, was optimized through comparison with Voronoi cell analysis. The model was implemented in an open-source CFD-DEM framework and validated against both a single-particle settling case and a fluidized bed experiment.
    Results
    Voronoi cell analysis determined the optimal diffusion time to be 0.6. Exceeding this value over-smoothens the spatial distribution and obscures local bed features. The single particle settling case demonstrated excellent agreement with experimental terminal velocities under various viscosities. The fluidized bed simulation successfully captured porosity distribution and the relationship between fluid velocity and particle density, consistent with experimental data. Application to HTR-10 pebble bed thermal-hydraulics showed temperature distributions aligning well with the SA-VSOP benchmark.
    Conclusions
    The proposed semi-resolved function model effectively overcomes the grid size limitation of traditional CFD-DEM, accurately capturing interphase forces in sub-particle-scale grids. It provides a high-precision and computationally viable scheme for detailed thermal-fluid analysis in advanced pebble-bed reactors.
  • loading
  • [1]
    王连杰, 孙伟, 夏榜样, 等. 球床先进高温堆堆芯设计研究[J]. 核动力工程, 2018, 39(s2): 87-91

    Wang Lianjie, Sun Wei, Xia Bangyang, et al. Research on core design of pebble bed advanced high temperature reactor[J]. Nuclear Power Engineering, 2018, 39(s2): 87-91
    [2]
    李睿, 任成, 杨星团, 等. 基于单元体理论的球床堆积结构与传热算法研究[J]. 核动力工程, 2016, 37(3): 39-42

    Li Rui, Ren Cheng, Yang Xingtuan, et al. Analysis of structures and heat transfer for packed beds[J]. Nuclear Power Engineering, 2016, 37(3): 39-42
    [3]
    丁旺. 基于CFD-DEM的颗粒流体两相耦合模型的研究[D]. 上海: 上海交通大学, 2021

    Ding Wang. Research on the particle-fluid two-phase coupling model based on CFD-DEM[D]. Shanghai: Shanghai Jiao Tong University, 2021
    [4]
    苏东升. 基于CFD-DEM耦合模拟方法的水流泥沙运动研究[D]. 天津: 天津大学, 2015

    Su Dongsheng. Investigation of fluid-sediment particle motion based on CFD-DEM coupling simulation method[D]. Tianjin: Tianjin University, 2015
    [5]
    姚鹏, 王远, 冒刘鹏, 等. CFD-DEM模型最优网格尺寸的理论推证[J]. 泥沙研究, 2023, 48(5): 1-7,34

    Yao Peng, Wang Yuan, Mao Liupeng, et al. Theoretical validation on the optimal mesh size of CFD-DEM model[J]. Journal of Sediment Research, 2023, 48(5): 1-7,34
    [6]
    Xie Zhouzun, Wang Shuai, Shen Yansong. A novel hybrid CFD-DEM method for high-fidelity multi-resolution modelling of cross-scale particulate flow[J]. Chemical Engineering Journal, 2023, 455: 140731. doi: 10.1016/j.cej.2022.140731
    [7]
    Wang Zekun, Liu Moubin. Semi-resolved CFD-DEM for thermal particulate flows with applications to fluidized beds[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120150. doi: 10.1016/j.ijheatmasstransfer.2020.120150
    [8]
    杨星团, 刘志勇, 胡文平, 等. HTR-10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术, 2013, 47(12): 2231-2237

    Yang Xingtuan, Liu Zhiyong, Hu Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237
    [9]
    徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003, 33(2): 251-260

    Xu Yong, Sun Qicheng, Zhang Ling, et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics, 2003, 33(2): 251-260
    [10]
    Wang Zekun, Teng Yujun, Liu Moubin. A semi-resolved CFD-DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy[J]. Journal of Computational Physics, 2019, 384: 151-169. doi: 10.1016/j.jcp.2019.01.017
    [11]
    Pirker S, Kahrimanovic D, Goniva C. Improving the applicability of discrete phase simulations by smoothening their exchange fields[J]. Applied Mathematical Modelling, 2011, 35(5): 2479-2488. doi: 10.1016/j.apm.2010.11.066
    [12]
    Rycroft C H. Multiscale modeling in granular flow[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [13]
    严安, 孙喜明, 董玉杰. 球床式高温堆堆芯气固两相流耦合模拟研究[J]. 哈尔滨工程大学学报, 2022, 43(12): 1743-1749

    Yan An, Sun Ximing, Dong Yujie. Simulation study of gas-solid two-phase flow coupling of pebble-bed cores in a high-temperature reactor[J]. Journal of Harbin Engineering University, 2022, 43(12): 1743-1749
    [14]
    蔡国庆, 刁显锋, 杨芮, 等. 基于CFD-DEM的流-固耦合数值建模方法研究进展[J]. 哈尔滨工业大学学报, 2024, 56(1): 17-32

    Cai Guoqing, Diao Xianfeng, Yang Rui, et al. Research progress of fluid-solid coupling model based on CFD-DEM coupling[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 17-32
    [15]
    Suikkanen H, Ritvanen J, Jalali P, et al. Discrete element modelling of pebble packing in pebble bed reactors[J]. Nuclear Engineering and Design, 2014, 273: 24-32. doi: 10.1016/j.nucengdes.2014.02.022
    [16]
    王晨洋. 颗粒堆积孔隙结构的统计性质研究[D]. 上海: 华东师范大学, 2024

    Wang Chenyang. A statistical study of the pore structures of granular packings[D]. Shanghai: East China Normal University, 2024
    [17]
    Kloss C, Goniva C, Hager A, et al. Models, algorithms and validation for opensource DEM and CFD–DEM[J]. Progress in Computational Fluid Dynamics, 2012, 12(2/3): 140-152. doi: 10.1504/PCFD.2012.047457
    [18]
    Di Felice R. The sedimentation velocity of dilute suspensions of nearly monosized spheres[J]. International Journal of Multiphase Flow, 1999, 25(4): 559-574. doi: 10.1016/S0301-9322(98)00084-6
    [19]
    Müller C R, Scott S A, Holland D J, et al. Validation of a discrete element model using magnetic resonance measurements[J]. Particuology, 2009, 7(4): 297-306. doi: 10.1016/j.partic.2009.04.002
    [20]
    Zhou Yandaizi, Wang Tielin, Zhu J. Investigation on minimum fluidization velocity in a modified Geldart’s diagram[J]. Chemical Engineering Journal, 2023, 453: 139984. doi: 10.1016/j.cej.2022.139984
    [21]
    Wu Hao, Zhao Houjian, Hao Zulong, et al. A non-linear transform approach for conduction-radiation heat transfer in the extended thermal discrete element method[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121432. doi: 10.1016/j.ijheatmasstransfer.2021.121432
    [22]
    Chen Fubing, Dong Yujie, Zheng Yanhua, et al. Benchmark calculation for the steady-state temperature distribution of the HTR-10 under full-power operation[J]. Journal of Nuclear Science and Technology, 2009, 46(6): 572-580. doi: 10.1080/18811248.2007.9711564
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (20) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return