Turn off MathJax
Article Contents
Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. A rapid modeling method for monte-carlo particle transport simulation based on TIN under complex terrain[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250243
Citation: Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. A rapid modeling method for monte-carlo particle transport simulation based on TIN under complex terrain[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250243

A rapid modeling method for monte-carlo particle transport simulation based on TIN under complex terrain

doi: 10.11884/HPLPB202638.250243
  • Received Date: 2025-07-03
  • Accepted Date: 2025-10-28
  • Rev Recd Date: 2025-11-04
  • Available Online: 2025-11-15
  • Background
    The traditional Monte-Carlo (MC) method faces an inherent trade-off between geometric modeling accuracy and computational efficiency when addressing real-world irregular terrain modeling.
    Purpose
    This paper proposes a fast MC particle transport modeling method based on irregular triangular networks for complex terrains, addressing the technical challenge of achieving adaptive and efficient MC modeling under high-resolution complex terrain scenarios.
    Methods
    The methodology consists of three key phases: First, high-resolution raster-format terrain elevation data are processed through two-dimensional wavelet transformation to precisely identify abrupt terrain variations and extract significant elevation points. Subsequently, the Delaunay triangulation algorithm is employed to construct TIN-structured terrain models from discrete point sets. Finally, the MCNP code's "arbitrary polyhedron" macrobody definition is leveraged to establish geometric planes, with Boolean operations applied to synthesize intricate geometric entities, thereby realizing rapid automated MC modeling for high-resolution complex terrains.
    Results
    Results demonstrate that the proposed method accurately reproduces terrain-induced effects on radiation transport, achieving high-fidelity simulations while significantly compressing the number of cells and enhancing computational efficiency.
    Conclusions
    This methodology represents a novel approach for large-scale radiation field modeling under complex terrain constraints, demonstrating broad applicability to MC particle transport simulations in arbitrary large-scale complex terrain scenarios.
  • loading
  • [1]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101
    [2]
    熊敏智, 张大才, 张夕蕊, 等. 基于蒙特卡罗均匀化的异形几何燃料棒物理性能研究[J]. 现代应用物理, 2023, 14: 040404

    Xiong Minzhi, Zhang Dacai, Zhang Xirui, et al. Physical properties of heterogeneous geometry fuel rods based on Monte Carlo homogenization[J]. Modern Applied Physics, 2023, 14: 040404
    [3]
    刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13: 010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
    [4]
    邓力, 李刚. 粒子输运蒙特卡罗模拟现状概述[J]. 计算物理, 2010, 27(6): 791-798

    Deng Li, Li Gang. A summarization on Monte Carlo simulation in particle transport[J]. Chinese Journal of Computational Physics, 2010, 27(6): 791-798
    [5]
    邓力, 李刚. 粒子输运问题的蒙特卡罗模拟方法与应用(上册)[M]. 北京: 科学出版社, 2019: 167-170

    Deng Li, Li Gang. Monte Carlo simulated methods and applications for particle transport problems[M]. Beijing: Science Press, 2019: 167-170
    [6]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [7]
    王学栋, 朱金辉, 左应红, 等. 复杂地形对核爆炸瞬发中子辐射场的影响[J]. 现代应用物理, 2023, 14: 030202

    Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. Influence of complex terrain on prompt neutron radiation field of nuclear detonation[J]. Modern Applied Physics, 2023, 14: 030202
    [8]
    Wang Xuedong, Zhu Jinhui, Zuo Yinghong, et al. Study on fast algorithm of neutron radiation field under complex terrain scenario based on ensemble learning approach[J]. Journal of Environmental Radioactivity, 2023, 268/269: 107244.
    [9]
    Al Zaman M A, Kunja L A. Effectiveness of radiation shields constructed from Martian regolith and different polymers for human habitat on Mars using MULASSIS/GEANT4 and OLTARIS[J]. AIP Advances, 2023, 13: 085108. doi: 10.1063/5.0163306
    [10]
    范家明. 基于TIN的DEM表面建模和精度评估研究[D]. 郑州: 解放军信息工程大学, 2007

    Fan Jiaming. Research on the surface modeling and accuracy evaluation of DEM based on TIN[D]. Zhengzhou: PLA Information Engineering University, 2007
    [11]
    许妙忠. 虚拟现实中三维地形建模和可视化技术及算法研究[D]. 武汉: 武汉大学, 2003

    Xu Miaozhong. Research on multi-resolution representation and visualization for terrain model in virtual reality[D]. Wuhan: Wuhan University, 2003
    [12]
    熊汉江, 郑先伟, 龚健雅. 面向虚拟地球的海陆地形多尺度TIN建模及可视化方法[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1597-1603

    Xiong Hanjiang, Zheng Xianwei, Gong Jianya. A multi-resolution TIN surface modeling and visualization method for coastal areas in virtual globe[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1597-1603
    [13]
    朱理, 胡超. 一种有效的规则网格到不规则三角网的转换算法[J]. 计算技术与自动化, 2006, 25(2): 67-70

    Zhu Li, Hu Chao. An effective transformed arithmetic from grid to TIN[J]. Computing Technology and Automation, 2006, 25(2): 67-70
    [14]
    张玲玉, 李瑞, 李刚, 等. 基于组合几何与自定义网格的粒子输运模拟方法[J]. 现代应用物理, 2022, 13: 010203

    Zhang Lingyu, Li Rui, Li Gang, et al. Particle transport simulation method based on constructive solid geometry and custom mesh[J]. Modern Applied Physics, 2022, 13: 010203
    [15]
    王振宇, 刘仕倡, 张小康, 等. 直接使用CAD几何的蒙特卡罗粒子输运方法研究[J]. 原子能科学技术, 2021, 55(s1): 88-91

    Wang Zhenyu, Liu Shichang, Zhang Xiaokang, et al. Research on Monte Carlo particle transport method directly using CAD geometry[J]. Atomic Energy Science and Technology, 2021, 55(s1): 88-91
    [16]
    杜华. 面向MC的辅助建模技术发展与应用研究[D]. 合肥: 中国科学技术大学, 2021

    Du Hua. Research on the development and application of computer-aided modeling technology for MC codes[D]. Hefei: University of Science and Technology of China, 2021
    [17]
    王立鹏, 曹璐, 余小任, 等. 基于直接CAD 几何模型的辐射场生成技术研究及应用[J]. 现代应用物理, 2024, 15: 030201

    Wang Lipeng, Cao Lu, Yu Xiaoren, et al. Research and application of radiation field generation technology based on direct CAD geometric model[J]. Modern Applied Physics, 2024, 15: 030201
    [18]
    王立鹏, 陈森, 张信一, 等. 基于非结构网格粒子输运的蒙特卡罗模拟计算研究[J]. 核科学与工程, 2024, 44(2): 286-294

    Wang Lipeng, Chen Sen, Zhang Xinyi, et al. Study on the particle transport calculation with Monte Carlo method based on unstructured grid[J]. Nuclear Science and Engineering, 2024, 44(2): 286-294
    [19]
    周培德. 计算几何——算法设计与分析[M]. 2版. 北京: 清华大学出版社, 2005: 96-97

    Zhou Peide. Computational geometry: algorithm design and analysis[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 96-97
    [20]
    De Kok T, Van Kreveld M, Löffler M. Generating realistic terrains with higher-order Delaunay triangulations[J]. Computational Geometry, 2007, 36(1): 52-65. doi: 10.1016/j.comgeo.2005.09.005
    [21]
    骆冠勇, 曹洪. 一种网格和节点同步生成的二维Delaunay网格划分算法[J]. 计算机辅助设计与图形学学报, 2007, 19(5): 605-608,615

    Luo Guanyong, Cao Hong. An algorithm for constructing 2D Delaunay adaptive mesh with simultaneous generation of nodes and elements[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(5): 605-608,615
    [22]
    郭浩然. 面向大规模三维地形构建的高性能计算支撑技术研究[D]. 郑州: 解放军信息工程大学, 2013

    Guo Haoran. Research on high-performance computing supporting technologies for large-scale 3D terrain construction[D]. Zhengzhou: PLA Information Engineering University, 2013
    [23]
    Wang Xiaodong, Zheng Xin, Yin Qian. Large scale terrain compression and real-time rendering based on wavelet transform[C]//Proceedings of the 2008 International Conference on Computational Intelligence and Security. 2008: 489-493.
    [24]
    魏迎梅, 周侃, 吴玲达. 基于小波变换的地形绘制关键技术研究[J]. 计算机应用研究, 2009, 26(11): 4378-4381

    Wei Yingmei, Zhou Kan, Wu Lingda. Key techniques on terrain rendering based on wavelet translation[J]. Application Research of Computers, 2009, 26(11): 4378-4381
    [25]
    X-5 Monte Carlo Team. MCNP—a general Monte Carlo N-particle transport code, version 5: volume I: overview and theory[R]. Los Alamos: Los Alamos National Laboratory, 2003.
    [26]
    Zuo Yinghong, Wang Jianguo, Shang Peng, et al. Study of effects of atmospheric humidity on neutron transportation and its dose field[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2046-2055. doi: 10.1109/TNS.2022.3198875
    [27]
    Van Wijk A J, Van Den Eynde G, Hoogenboom J E. An easy to implement global variance reduction procedure for MCNP[J]. Annals of Nuclear Energy, 2011, 38(11): 2496-2503. doi: 10.1016/j.anucene.2011.07.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (19) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return