Turn off MathJax
Article Contents
Zhang Changwen, Wei Lai, Zhao Jinfeng, et al. Phase synthesis method for high-power microwave dual frequency reflectarray antennas[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250271
Citation: Zhang Changwen, Wei Lai, Zhao Jinfeng, et al. Phase synthesis method for high-power microwave dual frequency reflectarray antennas[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250271

Phase synthesis method for high-power microwave dual frequency reflectarray antennas

doi: 10.11884/HPLPB202638.250271
  • Received Date: 2025-08-27
  • Accepted Date: 2025-10-26
  • Rev Recd Date: 2025-10-26
  • Available Online: 2025-11-01
  • Background
    In recent years, reflectarray antennas have received significant attention and research in the high-power microwave field due to their low profile, conformability, and spatial feed characteristics. Multi-frequency reflectarray antennas can share the same antenna plane while providing differentiated beam steering at different frequencies, resulting in greater system platform adaptability. However, these antennas commonly face the challenges of limited power handling capacity and low aperture efficiency.
    Purpose
    This paper aims to propose a phase synthesis method for high-power, dual-band reflectarray antennas, which enhances their power handling capacity and aperture efficiency. This approach is universally applicable to the design of multi-frequency reflectarray antennas.
    Methods
    The proposed phase synthesis method incorporates reference phase optimization and screening threshold techniques. It takes into account the reflected phase and electric field intensity of the antenna elements under different incident wave conditions. This approach effectively increases power capacity and aperture efficiency.
    Results
    We designed an improved reflectarray antenna element and applied the proposed phase synthesis method to a dual-band reflectarray antenna design. A 27×27 array operating at 4.3 GHz and 10.0 GHz achieved aperture efficiencies of 67.37% and 48.69%, respectively, with a power capacity of hundreds of megawatts in a vacuum environment.
    Conclusions
    The proposed phase synthesis method has been successfully validated, proving its effectiveness in designing high-performance, high-power, dual-frequency, and multi-frequency reflectarray antennas.
  • loading
  • [1]
    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015.
    [2]
    Benford J. Space applications of high-power microwaves[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 569-581. doi: 10.1109/TPS.2008.923760
    [3]
    李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125

    Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125
    [4]
    Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [5]
    Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256.
    [6]
    Zhao Xuhao, Xu Liang, Zhang Jiande, et al. A dielectric embedded reflectarray for high-power microwave application[J]. Review of Scientific Instruments, 2022, 93: 064703. doi: 10.1063/5.0091106
    [7]
    Xu Liang, Yuan Chengwei, Zhang Qiang, et al. Design and experiments of a beam-steerable wideband reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1955-1959. doi: 10.1109/TAP.2022.3232750
    [8]
    Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [9]
    陈瑞, 李相强, 张健穹, 等. 高功率宽频比C/X双频反射阵列天线设计[J]. 强激光与粒子束, 2023, 35: 063002 doi: 10.11884/HPLPB202335.220420

    Chen Rui, Li Xiangqiang, Zhang Jianqiong, et al. Design of high power wide frequency ratio C/X dual -band reflectarray antenna[J]. High Power Laser and Particle Beams, 2023, 35: 063002 doi: 10.11884/HPLPB202335.220420
    [10]
    赵旭浩, 毕绍锋, 张建德, 等. 伸缩式全金属反射阵列扫描天线[J]. 强激光与粒子束, 2022, 34: 043004 doi: 10.11884/HPLPB202234.210340

    Zhao Xuhao, Bi Shaofeng, Zhang Jiande, et al. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34: 043004 doi: 10.11884/HPLPB202234.210340
    [11]
    Bi Shaofeng, Xu Liang, Cheng Xiaoyu, et al. An all-metal, simple-structured reflectarray antenna with 2-D beam-steerable capability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 129-133. doi: 10.1109/LAWP.2022.3204617
    [12]
    Mao Yilin, Xu Shenheng, Yang Fan, et al. A novel phase synthesis approach for wideband reflectarray design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4189-4193. doi: 10.1109/TAP.2015.2447004
    [13]
    Nayeri P, Elsherbeni A Z, Yang Fan. Radiation analysis approaches for reflectarray antennas antenna designer’s notebook[J]. IEEE Antennas and Propagation Magazine, 2013, 55(1): 127-134. doi: 10.1109/MAP.2013.6474499
    [14]
    Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Single-layer dual-band reflectarray antennas with wide frequency ratios and high aperture efficiencies using phoenix elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 612-622. doi: 10.1109/TAP.2016.2639023
    [15]
    Xu Liang, Bi Shaofeng, Liu Jinliang, et al. A phase synthesis method for reflectarray in high-power microwave application[J]. IEEE Transactions on Plasma Science, 2022, 50(9): 2858-2863. doi: 10.1109/TPS.2022.3199430
    [16]
    许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36: 013002 doi: 10.11884/HPLPB202436.230379

    Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based on variable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002 doi: 10.11884/HPLPB202436.230379
    [17]
    Deng Ruyuan, Xu Shenheng, Yang Fan, et al. Design of a low-cost single-layer X/Ku dual-band metal-only reflectarray antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2106-2109. doi: 10.1109/LAWP.2017.2698099
    [18]
    Han C, Huang J, Chang Kai. A high efficiency offset-fed X/ka-dual-band reflectarray using thin membranes[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(9): 2792-2798. doi: 10.1109/TAP.2005.854531
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (82) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return