| Citation: | Duan Meng, Meng Xiangming, Wu Hanshuo, et al. Research progress on Oscillating Amplifying Integrated Fiber Lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250289 |
| [1] |
Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
|
| [2] |
Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications [invited][J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
|
| [3] |
Galvanauskas A. High power fiber lasers[J]. Optics and Photonics News, 2004, 15(7): 42-47.
|
| [4] |
Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Reviews, 2022, 16: 2100741.
|
| [5] |
Zhao Xiaohui, Gao Yu, Xu Mei Jian, et al. Studies on nanosecond laser induced damage to silica fibers[J]. Acta Physica Sinica, 2008, 57: 5027-5034.
|
| [6] |
Chapman T, Michel P, Di Nicola J M G, et al. Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target[J]. Journal of Applied Physics, 2019, 125: 033101. doi: 10.1063/1.5070066
|
| [7] |
段磊, 徐润亲, 宋云波, 等. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究[J]. 物理学报, 2023, 72: 104203 doi: 10.7498/aps.72.20222464
Duan Lei, Xu Runqin, Song Yunbo, et al. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser[J]. Acta Physica Sinica, 2023, 72: 104203 doi: 10.7498/aps.72.20222464
|
| [8] |
李昊, 叶新宇, 王蒙, 等. 飞秒激光刻写光纤布拉格光栅实现8 kW光纤振荡器[J]. 中国激光, 2022, 49: 2316001
Li Hao, Ye Xinyu, Wang Meng, et al. 8 kW fiber oscillator realized by femtosecond laser inscribed fiber Bragg grating[J]. Chinese Journal of Lasers, 2022, 49: 2316001
|
| [9] |
李登科, 尹路, 汤亚洲, 等. 低反光纤光栅对光纤激光器光谱展宽影响研究[J]. 激光与红外, 2018, 48(4): 486-492
Li Dengke, Yin Lu, Tang Yazhou, et al. Study on the effect of output coupler fiber Bragg grating on fiber laser spectral broadening[J]. Laser & Infrared, 2018, 48(4): 486-492
|
| [10] |
饶斌裕, 李昊, 杨保来, 等. 基于自研器件的全光纤激光振荡器突破万瓦级[J]. 中国激光, 2024, 51: 1915001 doi: 10.3788/CJL240855
Rao Binyu, Li Hao, Yang Baolai, et al. All-fiber laser oscillator based on home-made devices surpassing 10 kW level[J]. Chinese Journal of Lasers, 2024, 51: 1915001 doi: 10.3788/CJL240855
|
| [11] |
张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34: 021002
Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002
|
| [12] |
王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008
Wang Xiaolin, Tao Rumao, Yang Baolai, et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008
|
| [13] |
Yang Baolai, Zhang Hanwei, Shi Chen, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20: 025802. doi: 10.1088/2040-8986/aa9ec0
|
| [14] |
Hejaz K, Shayganmanesh M, Roohforouz A, et al. Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification[J]. Applied Optics, 2018, 57(21): 5992-5997. doi: 10.1364/AO.57.005992
|
| [15] |
舒强, 李成钰, 林宏奂, 等. 2 kW抗反射振荡-放大一体化光纤激光器[J]. 中国激光, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004
Shu Qiang, Li Chengyu, Lin Honghuan, et al. 2 kW class antireflection fiber laser with oscillator-amplifier integration[J]. Chinese Journal of Lasers, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004
|
| [16] |
王小林, 张汉伟, 史尘, 等. 基于SeeFiberLaser的光纤激光建模与仿真[M]. 北京: 科学出版社, 2021
Wang Xiaolin, Zhang Hanwei, Shi Chen, et al. Fiber laser modeling and simulation based on SeeFiberLaser[M]. Beijing: Science Press, 2021
|
| [17] |
Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. A novel bidirectional output oscillating-amplifying integrated fiber laser with 2 ports × 2 kW level near-single-mode output[J]. IEEE Photonics Journal, 2023, 15: 1500209. doi: 10.1109/jphot.2022.3230376
|
| [18] |
Zeng Lingfa, Shi Chen, Zhong Hairong, et al. Theoretical and experimental research on output characteristics of oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12614, 14th International Photonics and Optoelectronics Meetings (POEM 2022). 2022.
|
| [19] |
Zheng Yunhan, Han Zhigang, Li Yonglong, et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 2022, 30(8): 12670-12683.
|
| [20] |
Yan Donglin, Liao Ruoyu, Guo Chao, et al. A 3.7-kW Oscillating-amplifying integrated fiber laser featuring a compact oval-shaped cylinder package[J]. Micromachines, 2023, 14: 264. doi: 10.3390/mi14020264
|
| [21] |
Yan Donglin, Guo Chao, Zhao Pengfei, et al. A simple O-shaped cylinder fiber laser without inter-cladding-power-strippers[C]//Proceedings Volume 11890, Advanced Lasers, High-Power Lasers, and Applications XII. 2021.
|
| [22] |
Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 2017, 14: 025101. doi: 10.1088/1612-202X/aa4fbf
|
| [23] |
Zeng Lingfa, Yang Huan, Xi Xiaoming, et al. Optimization and demonstration of 6 kW oscillating-amplifying integrated fiber laser employing spindle-shaped fiber to suppress SRS and TMI[J]. Optics & Laser Technology, 2023, 159: 108903. doi: 10.1016/j.optlastec.2022.108903
|
| [24] |
Kong Lingchao, Leng Jinyong, Zhou Pu, et al. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6: e25. doi: 10.1017/hpl.2018.15
|
| [25] |
Cui Na, Liu Lie, Guo Shaofeng, et al. 5 kW single-mode oscillating-amplifying integrated fiber laser through tightly bent confined ytterbium-doped fiber[J]. Optics Express, 2024, 32(26): 45707-45719. doi: 10.1364/OE.541166
|
| [26] |
Tian Jiading, Xiao Qirong, Li Dan, et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2019, 2(4): 1138-1147. doi: 10.1364/OSAC.2.001138
|
| [27] |
Huang Yusheng, Yan Ping, Wang Zehui, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 2019, 27(3): 3136-3145. doi: 10.1364/OE.27.003136
|
| [28] |
Zeng Lingfa, Wang Xiaolin, Yang Baolai, et al. A 3.5-kW near-single-mode oscillating–amplifying integrated fiber laser[J]. High Power Laser Science and Engineering, 2021, 9: e41. doi: 10.1017/hpl.2021.31
|
| [29] |
Zeng Lingfa, Xi Xiaoming, Zhang Hanwei, et al. Demonstration of the reliability of a 5-kW-level oscillating–amplifying integrated fiber laser[J]. Optics Letters, 2021, 46(22): 5778-5781. doi: 10.1364/OL.445153
|
| [30] |
施建宏, 杜天怡, 马盖明, 等. 全国产化工业光纤激光器实现单纤22.07 kW功率稳定输出[J]. 中国激光, 2022, 49: 2416003
Shi Jianhong, Du Tianyi, Ma Gaiming, et al. All-national industrial fiber laser achieves stable 22.07 kW power output from a single fiber[J]. Chinese Journal of Lasers, 2022, 49: 2416003
|
| [31] |
Liao Ruoyu, Yang Xianheng, Zhao Pengfei, et al. Modified oscillating-amplifying integrated fiber laser for stimulated Raman scattering suppression[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
|
| [32] |
Lin Weixuan, Bussières-Hersir M H, Auger M, et al. 3 kW single-end forward-pumped fiber laser via pump recycler and oscillator length optimization[C]//2023 Conference on Lasers and Electro-Optics (CLEO). 2023: 1-2.
|
| [33] |
孟祥明, 杨保来, 奚小明, 等. 3.5 kW 1050 nm近单模全光纤激光放大器[J]. 光学学报, 2023, 43: 1714001 doi: 10.3788/AOS230555
Meng Xiangming, Yang Baolai, Xi Xiaoming, et al. All-fiber laser amplifier of 3.5 kW and 1050 nm with near-single-mode[J]. Acta Optica Sinica, 2023, 43: 1714001 doi: 10.3788/AOS230555
|
| [34] |
Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 4.8-kW high-efficiency 1050-nm monolithic fiber laser amplifier employing a pump-sharing structure[J]. Frontiers in Physics, 2023, 11: 1255125. doi: 10.3389/fphy.2023.1255125
|
| [35] |
Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 5 kW nearly-single-mode monolithic fiber laser emitting at~1050 nm employing asymmetric Bi-tapered ytterbium-doped fiber[J]. Photonics, 2023, 10: 1158. doi: 10.3390/photonics10101158
|
| [36] |
Meng Xiangming, Ye Yun, Yang Baolai, et al. Demonstration of 3 kW-level nearly single mode monolithic fiber amplifier emitting at 1050 Nm employing tapered Yb-doped fiber[J]. IEEE Photonics Journal, 2023, 15: 1501507. doi: 10.1109/jphot.2023.3277201
|
| [37] |
王鹏, 孟祥明, 吴函烁, 等. 长波段半导体激光泵浦光纤激光器实现2 kW功率输出[J]. 强激光与粒子束, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035
Wang Peng, Meng Xiangming, Wu Hanshuo, et al. 2 kW fiber laser pumped by long-wavelength laser diodes[J]. High Power Laser and Particle Beams, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035
|
| [38] |
曾令筏. 大功率振荡-放大一体化光纤激光器研究[D]. 长沙: 国防科技大学, 2024: 136-150
Zeng Lingfa. Research on high-power oscillator-amplifier integrated fiber laser[D]. Changsha: National University of Defense Technology, 2024: 136-150
|
| [39] |
Abbouab C, Malleville M A, Leconte B, et al. 40 W of supercontinuum generated by a self-pulsed pump-sharing oscillator-amplifier[J]. Applied Optics, 2024, 63(2): 377-382. doi: 10.1364/AO.511239
|
| [40] |
雷晶晶. 振荡放大一体化QCW光纤激光器研究[D]. 成都: 电子科技大学, 2024: 38-50
Lei Jingjing. Research on oscillator-amplifier integrated QCW fiber laser[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 38-50
|
| [41] |
Wu Jiazheng, Yu Miao, Cao Yi, et al. A 5 kW near-single-mode oscillating–amplifying fiber laser employing a broadband output coupler with simultaneous Raman suppression and spectral narrowing[J]. Photonics, 2025, 12: 813. doi: 10.3390/photonics12080813
|
| [42] |
中国科学院软件研究所. SeeFiberLaser光纤激光仿真软件[EB/OL].
|
| [43] |
丁欣怡, 王力, 曾令筏, 等. 双端输出近单模准连续全光纤激光器[J]. 物理学报, 2023, 72: 154205 doi: 10.7498/aps.72.20230616
Ding Xinyi, Wang Li, Zeng Lingfa, et al. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser[J]. Acta Physica Sinica, 2023, 72: 154205 doi: 10.7498/aps.72.20230616
|
| [44] |
王小林, 曾令筏, 叶云, 等. LD泵浦新型高功率掺镱光纤激光器研究(特邀)[J]. 中国激光, 2024, 51: 1901013 doi: 10.3788/CJL240948
Wang Xiaolin, Zeng Lingfa, Ye Yun, et al. Directly LD pumped novel high power ytterbium-doped fiber laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901013 doi: 10.3788/CJL240948
|
| [45] |
刘佳琪, 曾令筏, 史尘, 等. 双端输出全光纤振荡器突破8 kW高功率输出[J]. 强激光与粒子束, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201
Liu Jiaqi, Zeng Lingfa, Shi Chen, et al. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201
|
| [46] |
李科, 叶云, 李欣然, 等. 4.5 kW, 1050 nm双端输出近单模全光纤激光振荡器[J]. 物理学报, 2025, 74: 104203 doi: 10.7498/aps.74.20250072
Li Ke, Ye Yun, Li Xinran, et al. 4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator[J]. Acta Physica Sinica, 2025, 74: 104203 doi: 10.7498/aps.74.20250072
|
| [47] |
Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Theoretical demonstration of a novel bidirectional output oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
|
| [48] |
Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of a bidirectional oscillating-amplifying integrated fiber laser with two ports times 2.5kW[C]//Proceedings Volume 12792, Eighteenth National Conference on Laser Technology and Optoelectronics. 2023: 1279210.
|
| [49] |
Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of 3kW × 2 ports bidirectional output oscillating-amplifying integrated fiber laser employing chirped and tilted fiber Bragg gratings for co-SRS suppression[J]. Optics Express, 2023, 31(17): 28400-28412. doi: 10.1364/OE.494530
|
| [50] |
Liu Jiaqi, Zeng Lingfa, Wang Xiaolin, et al. 2 × 4 kW near-single-mode laser output assisted by an optimized bidirectional oscillating-amplifying integrated fiber laser configuration[J]. Optics Express, 2024, 32(11): 20035-20049. doi: 10.1364/OE.523781
|
| [51] |
王小林, 文榆钧, 张汉伟, 等. 变纤芯直径掺镱光纤激光器: 现状与趋势[J]. 中国激光, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001
Wang Xiaolin, Wen Yujun, Zhang Hanwei, et al. Ytterbium-doped core-diameter-variable fiber laser: current situation and develop tendency[J]. Chinese Journal of Lasers, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001
|
| [52] |
奚小明, 曾令筏, 张汉伟, 等. 5 kW振荡放大一体化高可靠性光纤激光器[J]. 强激光与粒子束, 2021, 33: 071001
Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, et al. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33: 071001
|
| [53] |
Silva A, Boller K J, Lindsay I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
|
| [54] |
Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090. doi: 10.1109/LPT.2012.2194780
|
| [55] |
Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 233-244. doi: 10.1109/JSTQE.2006.872729
|