Turn off MathJax
Article Contents
Duan Meng, Meng Xiangming, Wu Hanshuo, et al. Research progress on Oscillating Amplifying Integrated Fiber Lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250289
Citation: Duan Meng, Meng Xiangming, Wu Hanshuo, et al. Research progress on Oscillating Amplifying Integrated Fiber Lasers[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250289

Research progress on Oscillating Amplifying Integrated Fiber Lasers

doi: 10.11884/HPLPB202638.250289
  • Received Date: 2025-09-05
  • Accepted Date: 2025-12-04
  • Rev Recd Date: 2025-12-28
  • Available Online: 2026-01-17
  • Oscillating-amplifying integrated fiber lasers (OAIFLs) have emerged as a promising technology in high-power laser applications by combining the structural simplicity and superior anti-reflection capability of oscillators with the high efficiency of amplifiers. This review systematically summarizes recent progress from both theoretical and experimental perspectives. Theoretically, the focus is on advances in modeling mode instability and nonlinear effects, aiming to provide optimization guidelines for achieving high-power output. Experimentally, OAIFLs have successfully realized kilowatt-level narrow-linewidth and 10-kW-class broadband laser output in conventional wavelength bands. Beyond these bands, research primarily targets 1050 nm and 1018 nm fiber lasers. Furthermore, innovative dual-end output designs address core high-power challenges through distributed power extraction, significantly enhancing system power scalability. These advancements will accelerate broader applications in industrial processing, biomedical fields, and national defense. Analysis of current trends highlights key evolutionary pathways: benefiting from the integrated structure’s unique advantages in nonlinear management and amplified spontaneous emission (ASE) suppression, operational wavelengths are expanding from the conventional 10501080 nm range toward shorter specialty bands; driven by demands in coherent beam combining and high-precision spectroscopy for high-brightness sources, output spectra are shifting from broadband to narrow-linewidth emission; gain media are evolving from conventional homogeneous fibers to specially designed geometric structures to simultaneously mitigate nonlinear effects and transverse mode instability (TMI) under high-power conditions; to meet needs in precision machining, spectroscopic sensing, and scientific research for lasers with high peak power and tailored temporal profiles, operational modes are diversifying from continuous-wave to varied pulsed regimes; and output configurations are advancing from simple single-end to sophisticated dual-end designs, effectively addressing key challenges in high-power laser delivery. Nevertheless, persistent limitations include insufficient universality of theoretical models and a lack of systematic experimental validation. Future research should emphasize two complementary dimensions. Theoretically, efforts must deepen model construction and mechanistic analysis—including refining temporal modeling, investigating TMI origins and nonlinear coupling mechanisms, and elucidating the physics of pump-timing-independent operation. Experimentally, the focus should be on continuously optimizing output performance—enhancing power and efficiency, improving spectral characteristics and beam quality, and advancing toward pulsed and supercontinuum generation capabilities.
  • loading
  • [1]
    Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [2]
    Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications [invited][J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [3]
    Galvanauskas A. High power fiber lasers[J]. Optics and Photonics News, 2004, 15(7): 42-47.
    [4]
    Zuo Jiexi, Lin Xuechun. High-power laser systems[J]. Laser & Photonics Reviews, 2022, 16: 2100741.
    [5]
    Zhao Xiaohui, Gao Yu, Xu Mei Jian, et al. Studies on nanosecond laser induced damage to silica fibers[J]. Acta Physica Sinica, 2008, 57: 5027-5034.
    [6]
    Chapman T, Michel P, Di Nicola J M G, et al. Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target[J]. Journal of Applied Physics, 2019, 125: 033101. doi: 10.1063/1.5070066
    [7]
    段磊, 徐润亲, 宋云波, 等. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究[J]. 物理学报, 2023, 72: 104203 doi: 10.7498/aps.72.20222464

    Duan Lei, Xu Runqin, Song Yunbo, et al. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser[J]. Acta Physica Sinica, 2023, 72: 104203 doi: 10.7498/aps.72.20222464
    [8]
    李昊, 叶新宇, 王蒙, 等. 飞秒激光刻写光纤布拉格光栅实现8 kW光纤振荡器[J]. 中国激光, 2022, 49: 2316001

    Li Hao, Ye Xinyu, Wang Meng, et al. 8 kW fiber oscillator realized by femtosecond laser inscribed fiber Bragg grating[J]. Chinese Journal of Lasers, 2022, 49: 2316001
    [9]
    李登科, 尹路, 汤亚洲, 等. 低反光纤光栅对光纤激光器光谱展宽影响研究[J]. 激光与红外, 2018, 48(4): 486-492

    Li Dengke, Yin Lu, Tang Yazhou, et al. Study on the effect of output coupler fiber Bragg grating on fiber laser spectral broadening[J]. Laser & Infrared, 2018, 48(4): 486-492
    [10]
    饶斌裕, 李昊, 杨保来, 等. 基于自研器件的全光纤激光振荡器突破万瓦级[J]. 中国激光, 2024, 51: 1915001 doi: 10.3788/CJL240855

    Rao Binyu, Li Hao, Yang Baolai, et al. All-fiber laser oscillator based on home-made devices surpassing 10 kW level[J]. Chinese Journal of Lasers, 2024, 51: 1915001 doi: 10.3788/CJL240855
    [11]
    张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34: 021002

    Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002
    [12]
    王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008

    Wang Xiaolin, Tao Rumao, Yang Baolai, et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 2018, 45: 0801008 doi: 10.3788/CJL201845.0801008
    [13]
    Yang Baolai, Zhang Hanwei, Shi Chen, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20: 025802. doi: 10.1088/2040-8986/aa9ec0
    [14]
    Hejaz K, Shayganmanesh M, Roohforouz A, et al. Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification[J]. Applied Optics, 2018, 57(21): 5992-5997. doi: 10.1364/AO.57.005992
    [15]
    舒强, 李成钰, 林宏奂, 等. 2 kW抗反射振荡-放大一体化光纤激光器[J]. 中国激光, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004

    Shu Qiang, Li Chengyu, Lin Honghuan, et al. 2 kW class antireflection fiber laser with oscillator-amplifier integration[J]. Chinese Journal of Lasers, 2018, 45: 0801004 doi: 10.3788/CJL201845.0801004
    [16]
    王小林, 张汉伟, 史尘, 等. 基于SeeFiberLaser的光纤激光建模与仿真[M]. 北京: 科学出版社, 2021

    Wang Xiaolin, Zhang Hanwei, Shi Chen, et al. Fiber laser modeling and simulation based on SeeFiberLaser[M]. Beijing: Science Press, 2021
    [17]
    Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. A novel bidirectional output oscillating-amplifying integrated fiber laser with 2 ports × 2 kW level near-single-mode output[J]. IEEE Photonics Journal, 2023, 15: 1500209. doi: 10.1109/jphot.2022.3230376
    [18]
    Zeng Lingfa, Shi Chen, Zhong Hairong, et al. Theoretical and experimental research on output characteristics of oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12614, 14th International Photonics and Optoelectronics Meetings (POEM 2022). 2022.
    [19]
    Zheng Yunhan, Han Zhigang, Li Yonglong, et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 2022, 30(8): 12670-12683.
    [20]
    Yan Donglin, Liao Ruoyu, Guo Chao, et al. A 3.7-kW Oscillating-amplifying integrated fiber laser featuring a compact oval-shaped cylinder package[J]. Micromachines, 2023, 14: 264. doi: 10.3390/mi14020264
    [21]
    Yan Donglin, Guo Chao, Zhao Pengfei, et al. A simple O-shaped cylinder fiber laser without inter-cladding-power-strippers[C]//Proceedings Volume 11890, Advanced Lasers, High-Power Lasers, and Applications XII. 2021.
    [22]
    Tao Rumao, Su Rongtao, Ma Pengfei, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 2017, 14: 025101. doi: 10.1088/1612-202X/aa4fbf
    [23]
    Zeng Lingfa, Yang Huan, Xi Xiaoming, et al. Optimization and demonstration of 6 kW oscillating-amplifying integrated fiber laser employing spindle-shaped fiber to suppress SRS and TMI[J]. Optics & Laser Technology, 2023, 159: 108903. doi: 10.1016/j.optlastec.2022.108903
    [24]
    Kong Lingchao, Leng Jinyong, Zhou Pu, et al. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6: e25. doi: 10.1017/hpl.2018.15
    [25]
    Cui Na, Liu Lie, Guo Shaofeng, et al. 5 kW single-mode oscillating-amplifying integrated fiber laser through tightly bent confined ytterbium-doped fiber[J]. Optics Express, 2024, 32(26): 45707-45719. doi: 10.1364/OE.541166
    [26]
    Tian Jiading, Xiao Qirong, Li Dan, et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2019, 2(4): 1138-1147. doi: 10.1364/OSAC.2.001138
    [27]
    Huang Yusheng, Yan Ping, Wang Zehui, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 2019, 27(3): 3136-3145. doi: 10.1364/OE.27.003136
    [28]
    Zeng Lingfa, Wang Xiaolin, Yang Baolai, et al. A 3.5-kW near-single-mode oscillating–amplifying integrated fiber laser[J]. High Power Laser Science and Engineering, 2021, 9: e41. doi: 10.1017/hpl.2021.31
    [29]
    Zeng Lingfa, Xi Xiaoming, Zhang Hanwei, et al. Demonstration of the reliability of a 5-kW-level oscillating–amplifying integrated fiber laser[J]. Optics Letters, 2021, 46(22): 5778-5781. doi: 10.1364/OL.445153
    [30]
    施建宏, 杜天怡, 马盖明, 等. 全国产化工业光纤激光器实现单纤22.07 kW功率稳定输出[J]. 中国激光, 2022, 49: 2416003

    Shi Jianhong, Du Tianyi, Ma Gaiming, et al. All-national industrial fiber laser achieves stable 22.07 kW power output from a single fiber[J]. Chinese Journal of Lasers, 2022, 49: 2416003
    [31]
    Liao Ruoyu, Yang Xianheng, Zhao Pengfei, et al. Modified oscillating-amplifying integrated fiber laser for stimulated Raman scattering suppression[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
    [32]
    Lin Weixuan, Bussières-Hersir M H, Auger M, et al. 3 kW single-end forward-pumped fiber laser via pump recycler and oscillator length optimization[C]//2023 Conference on Lasers and Electro-Optics (CLEO). 2023: 1-2.
    [33]
    孟祥明, 杨保来, 奚小明, 等. 3.5 kW 1050 nm近单模全光纤激光放大器[J]. 光学学报, 2023, 43: 1714001 doi: 10.3788/AOS230555

    Meng Xiangming, Yang Baolai, Xi Xiaoming, et al. All-fiber laser amplifier of 3.5 kW and 1050 nm with near-single-mode[J]. Acta Optica Sinica, 2023, 43: 1714001 doi: 10.3788/AOS230555
    [34]
    Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 4.8-kW high-efficiency 1050-nm monolithic fiber laser amplifier employing a pump-sharing structure[J]. Frontiers in Physics, 2023, 11: 1255125. doi: 10.3389/fphy.2023.1255125
    [35]
    Meng Xiangming, Li Fengchang, Yang Baolai, et al. A 5 kW nearly-single-mode monolithic fiber laser emitting at~1050 nm employing asymmetric Bi-tapered ytterbium-doped fiber[J]. Photonics, 2023, 10: 1158. doi: 10.3390/photonics10101158
    [36]
    Meng Xiangming, Ye Yun, Yang Baolai, et al. Demonstration of 3 kW-level nearly single mode monolithic fiber amplifier emitting at 1050 Nm employing tapered Yb-doped fiber[J]. IEEE Photonics Journal, 2023, 15: 1501507. doi: 10.1109/jphot.2023.3277201
    [37]
    王鹏, 孟祥明, 吴函烁, 等. 长波段半导体激光泵浦光纤激光器实现2 kW功率输出[J]. 强激光与粒子束, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035

    Wang Peng, Meng Xiangming, Wu Hanshuo, et al. 2 kW fiber laser pumped by long-wavelength laser diodes[J]. High Power Laser and Particle Beams, 2024, 36: 031001 doi: 10.11884/HPLPB202436.240035
    [38]
    曾令筏. 大功率振荡-放大一体化光纤激光器研究[D]. 长沙: 国防科技大学, 2024: 136-150

    Zeng Lingfa. Research on high-power oscillator-amplifier integrated fiber laser[D]. Changsha: National University of Defense Technology, 2024: 136-150
    [39]
    Abbouab C, Malleville M A, Leconte B, et al. 40 W of supercontinuum generated by a self-pulsed pump-sharing oscillator-amplifier[J]. Applied Optics, 2024, 63(2): 377-382. doi: 10.1364/AO.511239
    [40]
    雷晶晶. 振荡放大一体化QCW光纤激光器研究[D]. 成都: 电子科技大学, 2024: 38-50

    Lei Jingjing. Research on oscillator-amplifier integrated QCW fiber laser[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 38-50
    [41]
    Wu Jiazheng, Yu Miao, Cao Yi, et al. A 5 kW near-single-mode oscillating–amplifying fiber laser employing a broadband output coupler with simultaneous Raman suppression and spectral narrowing[J]. Photonics, 2025, 12: 813. doi: 10.3390/photonics12080813
    [42]
    中国科学院软件研究所. SeeFiberLaser光纤激光仿真软件[EB/OL].

    [43]
    丁欣怡, 王力, 曾令筏, 等. 双端输出近单模准连续全光纤激光器[J]. 物理学报, 2023, 72: 154205 doi: 10.7498/aps.72.20230616

    Ding Xinyi, Wang Li, Zeng Lingfa, et al. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser[J]. Acta Physica Sinica, 2023, 72: 154205 doi: 10.7498/aps.72.20230616
    [44]
    王小林, 曾令筏, 叶云, 等. LD泵浦新型高功率掺镱光纤激光器研究(特邀)[J]. 中国激光, 2024, 51: 1901013 doi: 10.3788/CJL240948

    Wang Xiaolin, Zeng Lingfa, Ye Yun, et al. Directly LD pumped novel high power ytterbium-doped fiber laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51: 1901013 doi: 10.3788/CJL240948
    [45]
    刘佳琪, 曾令筏, 史尘, 等. 双端输出全光纤振荡器突破8 kW高功率输出[J]. 强激光与粒子束, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201

    Liu Jiaqi, Zeng Lingfa, Shi Chen, et al. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35: 081003 doi: 10.11884/HPLPB202335.230201
    [46]
    李科, 叶云, 李欣然, 等. 4.5 kW, 1050 nm双端输出近单模全光纤激光振荡器[J]. 物理学报, 2025, 74: 104203 doi: 10.7498/aps.74.20250072

    Li Ke, Ye Yun, Li Xinran, et al. 4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator[J]. Acta Physica Sinica, 2025, 74: 104203 doi: 10.7498/aps.74.20250072
    [47]
    Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Theoretical demonstration of a novel bidirectional output oscillating-amplifying integrated fiber laser[C]//Proceedings Volume 12595, Advanced Fiber Laser Conference (AFL2022). 2022.
    [48]
    Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of a bidirectional oscillating-amplifying integrated fiber laser with two ports times 2.5kW[C]//Proceedings Volume 12792, Eighteenth National Conference on Laser Technology and Optoelectronics. 2023: 1279210.
    [49]
    Liu Jiaqi, Zeng Lingfa, Wang Peng, et al. Demonstration of 3kW × 2 ports bidirectional output oscillating-amplifying integrated fiber laser employing chirped and tilted fiber Bragg gratings for co-SRS suppression[J]. Optics Express, 2023, 31(17): 28400-28412. doi: 10.1364/OE.494530
    [50]
    Liu Jiaqi, Zeng Lingfa, Wang Xiaolin, et al. 2 × 4 kW near-single-mode laser output assisted by an optimized bidirectional oscillating-amplifying integrated fiber laser configuration[J]. Optics Express, 2024, 32(11): 20035-20049. doi: 10.1364/OE.523781
    [51]
    王小林, 文榆钧, 张汉伟, 等. 变纤芯直径掺镱光纤激光器: 现状与趋势[J]. 中国激光, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001

    Wang Xiaolin, Wen Yujun, Zhang Hanwei, et al. Ytterbium-doped core-diameter-variable fiber laser: current situation and develop tendency[J]. Chinese Journal of Lasers, 2022, 49: 2100001 doi: 10.3788/CJL202249.2100001
    [52]
    奚小明, 曾令筏, 张汉伟, 等. 5 kW振荡放大一体化高可靠性光纤激光器[J]. 强激光与粒子束, 2021, 33: 071001

    Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, et al. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33: 071001
    [53]
    Silva A, Boller K J, Lindsay I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
    [54]
    Xiao Hu, Zhou Pu, Wang Xiaolin, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090. doi: 10.1109/LPT.2012.2194780
    [55]
    Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 233-244. doi: 10.1109/JSTQE.2006.872729
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return