Turn off MathJax
Article Contents
Guo Mengxue, Wang Kai, Huang Qianqian, et al. Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250347
Citation: Guo Mengxue, Wang Kai, Huang Qianqian, et al. Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250347

Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking

doi: 10.11884/HPLPB202638.250347
  • Received Date: 2025-10-15
  • Accepted Date: 2025-12-08
  • Rev Recd Date: 2025-12-25
  • Available Online: 2026-01-16
  • Background
    Gigahertz-repetition-rate femtosecond fiber lasers have attracted increasing attention for applications requiring high temporal resolution and high average power, while most existing GHz fiber amplification systems are limited to fixed repetition rates.
    Purpose
    This work aims to realize repetition-rate-tunable amplification of gigahertz femtosecond pulses within a single fiber-based platform by employing a passively harmonic mode-locked fiber laser as the seed source.
    Methods
    The seed laser provides stable pulse operation with repetition rates tunable from 1 to 3 GHz. A two-stage fiber amplification scheme combined with dispersion management is implemented to maintain stable amplification over the entire tuning range. In the pre-amplification stage, controllable chirp is introduced to achieve near-linear temporal broadening, which effectively suppresses excessive nonlinear effects during power scaling. Pulse compression is subsequently implemented at the output using single-mode fiber.
    Results
    Experimental results show that stable pulse trains with regular temporal distribution are preserved throughout the tuning range. The maximum average output power reaches 2.1 W at a repetition rate of 3.1 GHz, while the shortest pulse duration of 195 fs is obtained at 2.0 GHz. After amplification, the side-mode suppression ratio remains higher than 33 dB.
    Conclusions
    These results indicate the feasibility of gigahertz repetition-rate-tunable amplification of femtosecond fiber lasers on a single all-fiber platform.
  • loading
  • [1]
    Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 2018, 12(4): 209-214. doi: 10.1038/s41566-018-0135-2
    [2]
    Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [3]
    Zhao Chunzhu, Chen Shiyuan, Zhang Lifeng, et al. Miniature three-photon microscopy maximized for scattered fluorescence collection[J]. Nature Methods, 2023, 20(4): 617-622. doi: 10.1038/s41592-023-01777-3
    [4]
    Liu Junqiu, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 2020, 14(8): 486-491. doi: 10.1038/s41566-020-0617-x
    [5]
    Hu Hao, Da Ros F, Pu Minhao, et al. Single-source chip-based frequency comb enabling extreme parallel data transmission[J]. Nature Photonics, 2018, 12(8): 469-473. doi: 10.1038/s41566-018-0205-5
    [6]
    Crotti C, Deloison F, Alahyane F, et al. Wavelength optimization in femtosecond laser corneal surgery[J]. Investigative Opthalmology & Visual Science, 2013, 54(5): 3340-3349. doi: 10.1117/12.831893
    [7]
    He Fei, Yu Junjie, Tan Yuanxin, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 2017, 77: 40785. doi: 10.1038/srep40785
    [8]
    Qin Jiarong, Dai Ruihong, Li Yao, et al. 20 GHz actively mode-locked thulium fiber laser[J]. Optics Express, 2018, 26(20): 25769-25777. doi: 10.1364/OE.26.025769
    [9]
    Wang Wenlong, Lin Wei, Cheng Huihui, et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 125 GHz[J]. Optics Express, 2019, 27(8): 10438-10448. doi: 10.1364/OE.27.010438
    [10]
    Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
    [11]
    Grudinin A B, Richardson D J, Payne D N. Passive harmonic modelocking of a fibre soliton ring laser[J]. Electronics Letters, 1993, 29(21): 1860-1861. doi: 10.1049/el:19931238
    [12]
    Lee K F, Lampen J, Li Peng, et al. Fully stabilized Er fiber comb at 1 GHz by harmonic modelocking[J]. Optica, 2025, 12(9): 1486-1491. doi: 10.1364/OPTICA.568460
    [13]
    Wang Feng, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons[J]. Science, 2005, 308(5723): 838-841. doi: 10.1126/science.1110265
    [14]
    Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97: 203106. doi: 10.1063/1.3517251
    [15]
    Lau K Y, Liu Xiaofeng, Qiu Jianrong. A comparison for saturable absorbers: carbon nanotube versus graphene[J]. Advanced Photonics Research, 2022, 3: 2200023. doi: 10.1002/adpr.202200023
    [16]
    Jun C S, Choi S Y, Rotermund F, et al. Toward higher-order passive harmonic mode-locking of a soliton fiber laser[J]. Optics Letters, 2012, 37(11): 1862-1864. doi: 10.1364/OL.37.001862
    [17]
    Fujisaki A, Yoshida M, Hirooka T, et al. Generation of 10 W, 100 fs, 10 GHz pulse train using high power EDFA-MOPA system with cascaded Raman pumping[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics. 2015: 1-2.
    [18]
    Chen Xuewen, Lin Wei, Wang Wenlong, et al. High-power femtosecond all-fiber laser system at 1.5 µm with a fundamental repetition rate of 4.9 GHz[J]. Optics Letters, 2021, 46(8): 1872-1875. doi: 10.1364/OL.418331
    [19]
    Fan Yiheng, Xiu Hao, Lin Wei, et al. Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 μm[J]. High Power Laser Science and Engineering, 2023, 11: e50. doi: 10.1017/hpl.2023.36
    [20]
    Pinault S C, Potasek M J. Frequency broadening by self-phase modulation in optical fibers[J]. Journal of the Optical Society of America B, 1985, 2(8): 1318-1319. doi: 10.1364/JOSAB.2.001318
    [21]
    周毅. GHz重频飞秒光纤激光产生、放大与非线性效应研究[D]. 广州: 华南理工大学, 2019: 75

    Zhou Yi. Research on GHz repetition rate femtosecond fiber laser generation, amplification and nonlinear effects[D]. Guangzhou: South China University of Technology, 2019: 75
    [22]
    Agrawal G P. Nonlinear fiber optics[M]. 5th ed. Amsterdam: Academic Press, 2013.
    [23]
    Chraplyvy A R. Limitations imposed by fiber nonlinearity on WDM systems[J]. IEEE Photon Technol Lett, 1994, 6(5): 930-933.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return