| Citation: | Guo Mengxue, Wang Kai, Huang Qianqian, et al. Femtosecond pulse amplification system with GHz adjustable repetition rate based on harmonic mode locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250347 |
| [1] |
Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 2018, 12(4): 209-214. doi: 10.1038/s41566-018-0135-2
|
| [2] |
Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
|
| [3] |
Zhao Chunzhu, Chen Shiyuan, Zhang Lifeng, et al. Miniature three-photon microscopy maximized for scattered fluorescence collection[J]. Nature Methods, 2023, 20(4): 617-622. doi: 10.1038/s41592-023-01777-3
|
| [4] |
Liu Junqiu, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 2020, 14(8): 486-491. doi: 10.1038/s41566-020-0617-x
|
| [5] |
Hu Hao, Da Ros F, Pu Minhao, et al. Single-source chip-based frequency comb enabling extreme parallel data transmission[J]. Nature Photonics, 2018, 12(8): 469-473. doi: 10.1038/s41566-018-0205-5
|
| [6] |
Crotti C, Deloison F, Alahyane F, et al. Wavelength optimization in femtosecond laser corneal surgery[J]. Investigative Opthalmology & Visual Science, 2013, 54(5): 3340-3349. doi: 10.1117/12.831893
|
| [7] |
He Fei, Yu Junjie, Tan Yuanxin, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 2017, 77: 40785. doi: 10.1038/srep40785
|
| [8] |
Qin Jiarong, Dai Ruihong, Li Yao, et al. 20 GHz actively mode-locked thulium fiber laser[J]. Optics Express, 2018, 26(20): 25769-25777. doi: 10.1364/OE.26.025769
|
| [9] |
Wang Wenlong, Lin Wei, Cheng Huihui, et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 125 GHz[J]. Optics Express, 2019, 27(8): 10438-10448. doi: 10.1364/OE.27.010438
|
| [10] |
Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
|
| [11] |
Grudinin A B, Richardson D J, Payne D N. Passive harmonic modelocking of a fibre soliton ring laser[J]. Electronics Letters, 1993, 29(21): 1860-1861. doi: 10.1049/el:19931238
|
| [12] |
Lee K F, Lampen J, Li Peng, et al. Fully stabilized Er fiber comb at 1 GHz by harmonic modelocking[J]. Optica, 2025, 12(9): 1486-1491. doi: 10.1364/OPTICA.568460
|
| [13] |
Wang Feng, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons[J]. Science, 2005, 308(5723): 838-841. doi: 10.1126/science.1110265
|
| [14] |
Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97: 203106. doi: 10.1063/1.3517251
|
| [15] |
Lau K Y, Liu Xiaofeng, Qiu Jianrong. A comparison for saturable absorbers: carbon nanotube versus graphene[J]. Advanced Photonics Research, 2022, 3: 2200023. doi: 10.1002/adpr.202200023
|
| [16] |
Jun C S, Choi S Y, Rotermund F, et al. Toward higher-order passive harmonic mode-locking of a soliton fiber laser[J]. Optics Letters, 2012, 37(11): 1862-1864. doi: 10.1364/OL.37.001862
|
| [17] |
Fujisaki A, Yoshida M, Hirooka T, et al. Generation of 10 W, 100 fs, 10 GHz pulse train using high power EDFA-MOPA system with cascaded Raman pumping[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics. 2015: 1-2.
|
| [18] |
Chen Xuewen, Lin Wei, Wang Wenlong, et al. High-power femtosecond all-fiber laser system at 1.5 µm with a fundamental repetition rate of 4.9 GHz[J]. Optics Letters, 2021, 46(8): 1872-1875. doi: 10.1364/OL.418331
|
| [19] |
Fan Yiheng, Xiu Hao, Lin Wei, et al. Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 μm[J]. High Power Laser Science and Engineering, 2023, 11: e50. doi: 10.1017/hpl.2023.36
|
| [20] |
Pinault S C, Potasek M J. Frequency broadening by self-phase modulation in optical fibers[J]. Journal of the Optical Society of America B, 1985, 2(8): 1318-1319. doi: 10.1364/JOSAB.2.001318
|
| [21] |
周毅. GHz重频飞秒光纤激光产生、放大与非线性效应研究[D]. 广州: 华南理工大学, 2019: 75
Zhou Yi. Research on GHz repetition rate femtosecond fiber laser generation, amplification and nonlinear effects[D]. Guangzhou: South China University of Technology, 2019: 75
|
| [22] |
Agrawal G P. Nonlinear fiber optics[M]. 5th ed. Amsterdam: Academic Press, 2013.
|
| [23] |
Chraplyvy A R. Limitations imposed by fiber nonlinearity on WDM systems[J]. IEEE Photon Technol Lett, 1994, 6(5): 930-933.
|