| Citation: | Yang Yue, Wen Jiaxing, Wang Shaoyi, et al. Development and prospects of radiation sources from high field laser-irradiated structured targets[J]. High Power Laser and Particle Beams, 2026, 38: 021001. doi: 10.11884/HPLPB202638.250470 |
| [1] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
| [2] |
Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
|
| [3] |
Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals[J]. Laser Physics Letters, 2007, 4(6): 421-427. doi: 10.1002/lapl.200710008
|
| [4] |
Chu Yuxi, Liang Xiaoyan, Yu Lianghong, et al. High-contrast 2.0 Petawatt Ti: sapphire laser system[J]. Optics Express, 2013, 21(24): 29231-29239. doi: 10.1364/OE.21.029231
|
| [5] |
Zhou Kainan, Huang Xiaojun, Zeng Xiaoming, et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility[J]. Laser Physics, 2018, 28: 125301. doi: 10.1088/1555-6611/aae0db
|
| [6] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
| [7] |
Ouatu I, Spiers B T, Aboushelbaya R, et al. Ionization states for the multipetawatt laser-QED regime[J]. Physical Review E, 2022, 106: 015205. doi: 10.1103/PhysRevE.106.015205
|
| [8] |
周维民, 于明海, 张天奎, 等. 基于皮秒拍瓦激光的高分辨X射线背光照相研究[J]. 中国激光, 2020, 47: 0500010 doi: 10.3788/CJL202047.0500010
Zhou Weimin, Yu Minghai, Zhang Tiankui, et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 2020, 47: 0500010 doi: 10.3788/CJL202047.0500010
|
| [9] |
Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
|
| [10] |
Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Reviews of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002
|
| [11] |
Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918
|
| [12] |
Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22-52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 2013, 9(3): 635-641. doi: 10.1016/j.hedp.2013.05.006
|
| [13] |
Rosmej O N, Gyrdymov M, Günther M M, et al. High-current laser-driven beams of relativistic electrons for high energy density research[J]. Plasma Physics and Controlled Fusion, 2020, 62: 115024. doi: 10.1088/1361-6587/abb24e
|
| [14] |
税敏, 杨曦, 于明海, 等. 锡-泡沫界面不稳定性增长与混合实验研究[J]. 中国激光, 2021, 48: 0703002 doi: 10.3788/CJL202148.0703002
Shui Min, Yang Xi, Yu Minghai, et al. Instability growth of tin-foam interface and mixing experiment[J]. Chinese Journal of Lasers, 2021, 48: 0703002 doi: 10.3788/CJL202148.0703002
|
| [15] |
Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 2018, 89: 115106. doi: 10.1063/1.5034401
|
| [16] |
Courtois C, Edwards R, Compant La Fontaine A, et al. Characterisation of a MeV Bremsstrahlung X-ray source produced from a high intensity laser for high areal density object radiography[J]. Physics of Plasmas, 2013, 20: 083114. doi: 10.1063/1.4818505
|
| [17] |
Tommasini R, Landen O L, Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 2020, 125: 155003. doi: 10.1103/PhysRevLett.125.155003
|
| [18] |
Fournier K B, May M J, Colvin J D, et al. Multi-keV X-ray source development experiments on the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 082701. doi: 10.1063/1.3458904
|
| [19] |
Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 053104. doi: 10.1063/1.4983137
|
| [20] |
Kong Defeng, Zhang Guoqiang, Shou Yinren, et al. High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions[J]. Matter and Radiation at Extremes, 2022, 7: 064403. doi: 10.1063/5.0120845
|
| [21] |
Capeluto M G, Curtis A, Calvi C, et al. Deuterated polyethylene nanowire arrays for high-energy density physics[J]. High Power Laser Science and Engineering, 2021, 9: e34. doi: 10.1017/hpl.2021.21
|
| [22] |
Hadjisolomou P, Jeong T M, Valenta P, et al. Attosecond gamma-ray flashes and electron-positron pairs in dyadic laser interaction with microwire[J]. Physical Review E, 2025, 111: 025201. doi: 10.1103/PhysRevE.111.025201
|
| [23] |
Vallières S, Salvadori M, Permogorov A, et al. Enhanced laser-driven proton acceleration using nanowire targets[J]. Scientific Reports, 2021, 11: 2226. doi: 10.1038/s41598-020-80392-0
|
| [24] |
Chao Yue, Cao Lihua, Zheng Chunyang, et al. Enhanced proton acceleration from laser interaction with a tailored nanowire target[J]. Applied Sciences, 2022, 12: 1153. doi: 10.3390/app12031153
|
| [25] |
张天奎, 单连强, 于明海, 等. 皮秒激光驱动的X射线源编码高分辨照相技术[J]. 强激光与粒子束, 2022, 34: 122001 doi: 10.11884/HPLPB202234.220186
Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001 doi: 10.11884/HPLPB202234.220186
|
| [26] |
Ji Liangliang, Jiang Sheng, Pukhov A, et al. Exploring novel target structures for manipulating relativistic laser-plasma interaction[J]. High Power Laser Science and Engineering, 2017, 5: e14. doi: 10.1017/hpl.2017.12
|
| [27] |
Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 2019, 21: 013008. doi: 10.1088/1367-2630/aaf8c4
|
| [28] |
Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
|
| [29] |
Rubovič P, Bonasera A, Burian P, et al. Measurements of D-D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164680. doi: 10.1016/j.nima.2020.164680
|
| [30] |
Muoio A, Altana C, Frassetto M, et al. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results[J]. Journal of Instrumentation, 2017, 12: C03076. doi: 10.1088/1748-0221/12/03/C03076
|
| [31] |
Kulcsár G, AlMawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149
|
| [32] |
Kahaly S, Yadav S K, Wang W M, et al. Near-complete absorption of intense, ultrashort laser light by sub-λ gratings[J]. Physical Review Letters, 2008, 101: 145001. doi: 10.1103/PhysRevLett.101.145001
|
| [33] |
Freidberg J P, Mitchell R W, Morse R L, et al. Resonant absorption of laser light by plasma targets[J]. Physical Review Letters, 1972, 28(13): 795-799. doi: 10.1103/PhysRevLett.28.795
|
| [34] |
Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386. doi: 10.1103/PhysRevLett.69.1383
|
| [35] |
Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75
|
| [36] |
Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52
|
| [37] |
Brunel F. Anomalous absorption of high intensity subpicosecond laser pulses[J]. Physics of Fluids, 1988, 31(9): 2714-2719. doi: 10.1063/1.867001
|
| [38] |
Jiang S, Krygier A G, Schumacher D W, et al. Effects of front-surface target structures on properties of relativistic laser-plasma electrons[J]. Physical Review E, 2014, 89: 013106. doi: 10.1103/PhysRevE.89.013106
|
| [39] |
Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
|
| [40] |
Babjak R, Willingale L, Arefiev A, et al. Direct laser acceleration in underdense plasmas with multi-PW lasers: a path to high-charge, GeV-class electron bunches[J]. Physical Review Letters, 2024, 132: 125001. doi: 10.1103/PhysRevLett.132.125001
|
| [41] |
Rosmej O N, Gyrdymov M, Andreev N E, et al. Advanced plasma target from pre-ionized low-density foam for effective and robust direct laser acceleration of electrons[J]. High Power Laser Science and Engineering, 2025, 13: e3. doi: 10.1017/hpl.2024.85
|
| [42] |
Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298
|
| [43] |
Yang Yue, Li Boyuan, Yan Yonghong, et al. Investigation on the transport efficiency of fast electrons with double-layer Kα fluorescence measurement[J]. Physics of Plasmas, 2019, 26: 073101. doi: 10.1063/1.5096933
|
| [44] |
李博原. 超强激光产生的超热电子在微纳结构靶中的输运研究[D]. 北京: 中国工程物理研究院, 2017
Li Boyuan. Study on the transport of ultra-intense laser-driven fast electron beam in nanostructure targets[D]. Beijing: China Academy of Engineering Physics, 2017
|
| [45] |
Yang Yue, Li Boyuan, Wu Yuchi, et al. Manipulation and optimization of electron transport by nanopore array targets[J]. Plasma Science and Technology, 2021, 23: 015001. doi: 10.1088/2058-6272/abbd37
|
| [46] |
Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 2006, 13: 056309. doi: 10.1063/1.2178775
|
| [47] |
Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser-nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001.
|
| [48] |
Courtois C, Edwards R, Compant La Fontaine A, et al. High-resolution multi-MeV X-ray radiography using relativistic laser-solid interaction[J]. Physics of Plasmas, 2011, 18: 023101. doi: 10.1063/1.3551738
|
| [49] |
Lemos N, Albert F, Shaw J L, et al. Bremsstrahlung hard X-ray source driven by an electron beam from a self-modulated laser wakefield accelerator[J]. Plasma Physics and Controlled Fusion, 2018, 60: 054008. doi: 10.1088/1361-6587/aab3b5
|
| [50] |
Phuoc K T, Fitour R, Tafzi A, et al. Demonstration of the ultrafast nature of laser produced betatron radiation[J]. Physics of Plasmas, 2007, 14: 080701. doi: 10.1063/1.2754624
|
| [51] |
Phuoc K T, Esarey E, Leurent V, et al. Betatron radiation from density tailored plasmas[J]. Physics of Plasmas, 2008, 15: 063102. doi: 10.1063/1.2918657
|
| [52] |
Thomas A G R, Krushelnick K. Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields[J]. Physics of Plasmas, 2009, 16: 103103. doi: 10.1063/1.3237089
|
| [53] |
Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
|
| [54] |
Rosmej O N, Shen X F, Pukhov A, et al. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6: 048401. doi: 10.1063/5.0042315
|
| [55] |
Zhao Zongqing, Cao Lihua, Cao Leifeng, et al. Acceleration and guiding of fast electrons by a nanobrush target[J]. Physics of Plasmas, 2010, 17: 123108. doi: 10.1063/1.3507292
|
| [56] |
Ji Yanling, Jiang Gang, Wu Weidong, et al. Efficient generation and transportation of energetic electrons in a carbon nanotube array target[J]. Applied Physics Letters, 2010, 96: 041504. doi: 10.1063/1.3298016
|
| [57] |
Zigler A, Palchan T, Bruner N, et al. 5.5-7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets[J]. Physical Review Letters, 2011, 106: 134801. doi: 10.1103/PhysRevLett.106.134801
|
| [58] |
Margarone D, Klimo O, Kim I J, et al. Laser-driven proton acceleration enhancement by nanostructured foils[J]. Physical Review Letters, 2012, 109: 234801. doi: 10.1103/PhysRevLett.109.234801
|
| [59] |
Zigler A, Eisenman S, Botton M, et al. Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets[J]. Physical Review Letters, 2013, 110: 215004. doi: 10.1103/PhysRevLett.110.215004
|
| [60] |
Jiang S, Ji L L, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 2016, 116: 085002. doi: 10.1103/PhysRevLett.116.085002
|
| [61] |
Khaghani D, Lobet M, Borm B, et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy[J]. Scientific Reports, 2017, 7: 11366. doi: 10.1038/s41598-017-11589-z
|
| [62] |
Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
|
| [63] |
Dozières M, Petrov G M, Forestier-Colleoni P, et al. Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065016. doi: 10.1088/1361-6587/ab157c
|
| [64] |
Moreau A, Hollinger R, Calvi C, et al. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014013. doi: 10.1088/1361-6587/ab4d0c
|
| [65] |
Gizzi L A, Cristoforetti G, Baffigi F, et al. Intense proton acceleration in ultrarelativistic interaction with nanochannels[J]. Physical Review Research, 2020, 2: 033451. doi: 10.1103/PhysRevResearch.2.033451
|
| [66] |
Cristoforetti G, Baffigi F, Brandi F, et al. Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets[J]. Plasma Physics and Controlled Fusion, 2020, 62: 114001. doi: 10.1088/1361-6587/abb5e3
|
| [67] |
Ebert T, Neumann N W, Döhl L N K, et al. Enhanced brightness of a laser-driven X-ray and particle source by microstructured surfaces of silicon targets[J]. Physics of Plasmas, 2020, 27: 043106. doi: 10.1063/1.5125775
|
| [68] |
Bailly-Grandvaux M, Kawahito D, McGuffey C, et al. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses[J]. Physical Review E, 2020, 102: 021201(R).
|
| [69] |
Jiang S, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 2021, 118: 094101. doi: 10.1063/5.0038222
|
| [70] |
Curtis A, Hollinger R, Calvi C, et al. Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays[J]. Physical Review Research, 2021, 3: 043181. doi: 10.1103/PhysRevResearch.3.043181
|
| [71] |
Qin Chengyu, Zhang Hui, Li Shun, et al. High efficiency laser-driven proton sources using 3D-printed micro-structure[J]. Communications Physics, 2022, 5: 124. doi: 10.1038/s42005-022-00900-8
|
| [72] |
杨月, 孙斌, 邓志刚, 等. 拍瓦激光驱动纳米刷靶高品质质子束的产生[J]. 强激光与粒子束, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440
Yang Yue, Sun Bin, Deng Zhigang, et al. Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse[J]. High Power Laser and Particle Beams, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440
|
| [73] |
Nishikawa T, Nakano H, Oguri K, et al. Nanocylinder-array structure greatly increases the soft X-Ray intensity generated from femtosecond-laser-produced plasma[J]. Applied Physics B, 2001, 73(2): 185-188. doi: 10.1007/s003400100625
|
| [74] |
Rajeev P P, Taneja P, Ayyub P, et al. Metal nanoplasmas as bright sources of hard X-ray pulses[J]. Physical Review Letters, 2003, 90: 115002. doi: 10.1103/PhysRevLett.90.115002
|
| [75] |
Rajeev P P, Ayyub P, Bagchi S, et al. Nanostructures, local fields, and enhanced absorption in intense light-matter interaction[J]. Optics Letters, 2004, 29(22): 2662-2664. doi: 10.1364/OL.29.002662
|
| [76] |
Mondal S, Chakraborty I, Ahmad S, et al. Highly enhanced hard X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses[J]. Physical Review B, 2011, 83: 035408. doi: 10.1103/PhysRevB.83.035408
|
| [77] |
Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Control of the hot electrons produced by laser interaction with nanolayered target[J]. Physics of Plasmas, 2010, 17: 103106. doi: 10.1063/1.3481463
|
| [78] |
Zhao Jincui, Zheng Jianhua, Cao Lihua, et al. Monte Carlo simulations of Kα source generated by hot electrons-nanobrush target interactions[J]. Physics of Plasmas, 2016, 23: 093102. doi: 10.1063/1.4962186
|
| [79] |
Cao Lihua, Chen Mo, Zhao Zongqing, et al. Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target[J]. Physics of Plasmas, 2011, 18: 054501. doi: 10.1063/1.3589303
|
| [80] |
Yu Jinqing, Zhou Weimin, Cao Lihua, et al. Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets[J]. Applied Physics Letters, 2012, 100: 204101. doi: 10.1063/1.4718735
|
| [81] |
Wang Huan, Cao Lihua, Zhao Zongqing, et al. Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target[J]. Laser and Particle Beams, 2012, 30(4): 553-558. doi: 10.1017/S0263034612000493
|
| [82] |
Kodama R, Sentoku Y, Chen Z L, et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 2004, 432(7020): 1005-1008. doi: 10.1038/nature03133
|
| [83] |
Green J S, Lancaster K L, Akli K U, et al. Surface heating of wire plasmas using laser-irradiated cone geometries[J]. Nature Physics, 2007, 3(12): 853-856. doi: 10.1038/nphys755
|
| [84] |
Sawada H, Higginson D P, Link A, et al. Characterizing the energy distribution of laser-generated relativistic electrons in cone-wire targets[J]. Physics of Plasmas, 2012, 19: 103108. doi: 10.1063/1.4759163
|
| [85] |
Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
|
| [86] |
Singh P K, Chatterjee G, Lad A D, et al. Efficient generation and guiding of megaampere relativistic electron current by silicon nanowires[J]. Applied Physics Letters, 2012, 100: 244104. doi: 10.1063/1.4729010
|
| [87] |
Chatterjee G, Singh P K, Ahmed S, et al. Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays[J]. Physical Review Letters, 2012, 108: 235005. doi: 10.1103/PhysRevLett.108.235005
|
| [88] |
Cristoforetti G, Anzalone A, Baffigi F, et al. Investigation on laser-plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target[J]. Plasma Physics and Controlled Fusion, 2014, 56: 095001. doi: 10.1088/0741-3335/56/9/095001
|
| [89] |
Cristoforetti G, Londrillo P, Singh P K, et al. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets[J]. Scientific Reports, 2017, 7: 1479. doi: 10.1038/s41598-017-01677-5
|
| [90] |
Fedeli L, Formenti A, Cialfi L, et al. Ultra-intense laser interaction with nanostructured near-critical plasmas[J]. Scientific Reports, 2018, 8: 3834. doi: 10.1038/s41598-018-22147-6
|
| [91] |
Bin J H, Ma W J, Wang H Y, et al. Relativistic plasma optics enabled by near-critical density nanostructured material[J]. Scientific Reports, 2014, 6: 23256.
|
| [92] |
Bin J H, Ma W J, Wang H Y, et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 2015, 115: 064801. doi: 10.1103/PhysRevLett.115.064801
|
| [93] |
Bin J H, Yeung M, Gong Z, et al. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma[J]. Physical Review Letters, 2018, 120: 074801. doi: 10.1103/PhysRevLett.120.074801
|
| [94] |
Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803. doi: 10.1103/PhysRevLett.122.014803
|
| [95] |
Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 2016, 6: 23256. doi: 10.1038/srep23256
|
| [96] |
Habara H, Honda S, Katayama M, et al. Efficient energy absorption of intense ps-laser pulse into nanowire target[J]. Physics of Plasmas, 2016, 23: 063105. doi: 10.1063/1.4953092
|
| [97] |
Habara H, Lad A D, Nagami R, et al. Micro-optics for ultra-intense lasers[J]. AIP Advances, 2021, 11: 035214. doi: 10.1063/5.0038023
|
| [98] |
Sedov M V, Faenov A Y, Andreev A A, et al. Features of the generation of fast particles from microstructured targets irradiated by high intensity, picosecond laser pulses[J]. Laser and Particle Beams, 2019, 37(2): 176-183. doi: 10.1017/S0263034619000351
|
| [99] |
Robinson A P L, Sherlock M. Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition[J]. Physics of Plasmas, 2007, 14: 083105. doi: 10.1063/1.2768317
|
| [100] |
Robinson A P L, Key M H, Tabak M. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard[J]. Physical Review Letters, 2012, 108: 125004. doi: 10.1103/PhysRevLett.108.125004
|
| [101] |
Kar S, Robinson A P L, Carroll D C, et al. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields[J]. Physical Review Letters, 2009, 102: 055001. doi: 10.1103/PhysRevLett.102.055001
|
| [102] |
Ramakrishna B, Kar S, Robinson A P L, et al. Laser-driven fast electron collimation in targets with resistivity boundary[J]. Physical Review Letters, 2010, 105: 135001. doi: 10.1103/PhysRevLett.105.135001
|
| [103] |
Chawla S, Wei M S, Mishra R, et al. Effect of target material on fast-electron transport and resistive collimation[J]. Physical Review Letters, 2013, 110: 025001. doi: 10.1103/PhysRevLett.110.025001
|
| [104] |
Debayle A, Gremillet L, Honrubia J J, et al. Reduction of the fast electron angular dispersion by means of varying-resistivity structured targets[J]. Physics of Plasmas, 2013, 20: 013109. doi: 10.1063/1.4789451
|
| [105] |
Li Boyuan, Zhang Zhimeng, Wang Jian, et al. Transport of fast electrons in a nanowire array with collisional effects included[J]. Physics of Plasmas, 2015, 22: 123118. doi: 10.1063/1.4938515
|
| [106] |
Wu Sizhong, Zhou Cangtao, Zhu Shaoping. Effect of density profile on beam control of intense laser-generated fast electrons[J]. Physics of Plasmas, 2010, 17: 063103. doi: 10.1063/1.3432695
|
| [107] |
Cai Hongbo, Zhu Shaoping, He X T, et al. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses[J]. Physics of Plasmas, 2011, 18: 023106. doi: 10.1063/1.3553453
|
| [108] |
Cai Hongbo, Zhu Shaoping, Chen Mo, et al. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas[J]. Physical Review E, 2011, 83: 036408. doi: 10.1103/PhysRevE.83.036408
|
| [109] |
Yang X H, Borghesi M, Robinson A P L. Fast-electron self-collimation in a plasma density gradient[J]. Physics of Plasmas, 2012, 19: 062702. doi: 10.1063/1.4729322
|
| [110] |
Zhuo H B, Yang X H, Zhou C T, et al. Effect of resistivity gradient on laser-driven electron transport and ion acceleration[J]. Physics of Plasmas, 2013, 20: 093103. doi: 10.1063/1.4820933
|
| [111] |
Singh P K, Chakraborty I, Chatterjee G, et al. Enhanced transport of relativistic electrons through nanochannels[J]. Physical Review Accelerators and Beams, 2013, 16: 063401. doi: 10.1103/PhysRevSTAB.16.063401
|
| [112] |
Yu Jinqing, Zhou Weimin, Jin Xiaolin, et al. Improvement of proton energy in high-intensity laser-nanobrush target interactions[J]. Laser and Particle Beams, 2012, 30(2): 307-311. doi: 10.1017/S0263034612000134
|
| [113] |
Yu Jinqing, Zhao Zongqing, Jin Xiaolin, et al. Laser-driven proton acceleration using a conical nanobrush target[J]. Physics of Plasmas, 2012, 19: 053108. doi: 10.1063/1.4714809
|
| [114] |
Xie R, Cao L H, Chao Y, et al. Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target[J]. Physics of Plasmas, 2020, 27: 123108. doi: 10.1063/5.0022144
|
| [115] |
Li Xueming, Chao Yue, Liu Deji, et al. Enhanced proton acceleration from laser interaction with curved surface nanowire targets[J]. Journal of Plasma Physics, 2023, 89: 905890113. doi: 10.1017/S0022377823000132
|
| [116] |
Dalui M, Kundu M, Sarkar S, et al. Mass selection in laser-plasma ion accelerator on nanostructured surfaces[J]. Physics of Plasmas, 2017, 24: 010703. doi: 10.1063/1.4973887
|
| [117] |
Andreev A, Kumar N, Platonov K, et al. Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers[J]. Physics of Plasmas, 2011, 18: 103103. doi: 10.1063/1.3641965
|
| [118] |
Andreev A A, Nickles P V, Platonov K Y. Generation and transport of energetic electrons in nanowire targets irradiated by relativistic intense laser pulses[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084005. doi: 10.1088/0741-3335/56/8/084005
|
| [119] |
Andreev A A, Sedov M V, Platonov K Y, et al. Controlling energy distribution of fast ions and X-ray emission via target reliefs in ultrafast and relativistic laser plasma interaction[J]. Physics of Plasmas, 2019, 26: 113110. doi: 10.1063/1.5119773
|
| [120] |
Lübcke A, Andreev A A, Höhm S, et al. Prospects of target nanostructuring for laser proton acceleration[J]. Scientific Reports, 2017, 7: 44030. doi: 10.1038/srep44030
|
| [121] |
Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
|
| [122] |
Turcu I C E, Shen B, Neely D, et al. Quantum electrodynamics experiments with colliding petawatt laser pulses[J]. High Power Laser Science and Engineering, 2019, 7: e10. doi: 10.1017/hpl.2018.66
|
| [123] |
Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
|
| [124] |
Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone[J]. New Journal of Physics, 2015, 17: 053039. doi: 10.1088/1367-2630/17/5/053039
|
| [125] |
Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
|
| [126] |
Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202
|
| [127] |
Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Enhanced electron–positron pair production by ultra intense laser irradiating a compound target[J]. Plasma Physics and Controlled Fusion, 2016, 58: 125007. doi: 10.1088/0741-3335/58/12/125007
|
| [128] |
Jiang K, Pukhov A, Zhou C T. TJ cm-3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires[J]. Plasma Physics and Controlled Fusion, 2021, 63: 015014. doi: 10.1088/1361-6587/abc89e
|
| [129] |
Purvis M A, Shlyaptsev V N, Hollinger R, et al. Relativistic plasma nanophotonics for ultrahigh energy density physics[J]. Nature Photonics, 2013, 7(10): 796-800. doi: 10.1038/nphoton.2013.217
|
| [130] |
Glenzer S H, Callahan D A, MacKinnon A J, et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility[J]. Physics of Plasmas, 2012, 19: 056318. doi: 10.1063/1.4719686
|
| [131] |
Bargsten C, Hollinger R, Capeluto M G, et al. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: scaling to terabar pressures[J]. Science Advances, 2017, 3: e1601558. doi: 10.1126/sciadv.1601558
|
| [132] |
Hollinger R, Bargsten C, Shlyaptsev V N, et al. Efficient picosecond X-ray pulse generation from plasmas in the radiation dominated regime[J]. Optica, 2017, 4(11): 1344-1349. doi: 10.1364/OPTICA.4.001344
|
| [133] |
Curtis A, Calvi C, Tinsley J, et al. Micro-scale fusion in dense relativistic nanowire array plasmas[J]. Nature Communications, 2018, 9: 1077. doi: 10.1038/s41467-018-03445-z
|
| [134] |
Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573
|
| [135] |
Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202
|
| [136] |
Shou Yinren, Kong Defeng, Wang Pengjie, et al. High-efficiency water-window X-ray generation from nanowire array targets irradiated with femtosecond laser pulses[J]. Optics Express, 2021, 29(4): 5427-5436. doi: 10.1364/OE.417512
|
| [137] |
Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8
|
| [138] |
Pertot Y, Schmidt C, Matthews M, et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355(6322): 264-267. doi: 10.1126/science.aah6114
|
| [139] |
Kraus P M, Mignolet B, Baykusheva D, et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene[J]. Science, 2015, 350(6262): 790-795. doi: 10.1126/science.aab2160
|
| [140] |
McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 1987, 4(4): 595-601. doi: 10.1364/JOSAB.4.000595
|
| [141] |
Dromey B, Kar S, Bellei C, et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces[J]. Physical Review Letters, 2007, 99: 085001. doi: 10.1103/PhysRevLett.99.085001
|
| [142] |
Lavocat-Dubuis X, Matte J P. Numerical simulation of harmonic generation by relativistic laser interaction with a grating[J]. Physical Review E, 2009, 80: 055401(R).
|
| [143] |
Wang Shaoyi, Tan Fang, Yang Zuhua, et al. Selective generation of narrow-band harmonics by a relativistic laser pulse interaction with a detuned plasma grating[J]. Physical Review E, 2022, 105: 065207. doi: 10.1103/PhysRevE.105.065207
|
| [144] |
Dawson J. One-dimensional plasma model[J]. Physics of Fluids, 1962, 5(4): 445-459. doi: 10.1063/1.1706638
|
| [145] |
Birdsall C K, Fuss D. Clouds-in-Clouds, Clouds-in-Cells physics for many-body plasma simulation[J]. Journal of Computational Physics, 1969, 3(4): 494-511. doi: 10.1016/0021-9991(69)90058-8
|
| [146] |
Welch D R, Rose D V, Clark R E, et al. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation[J]. Computer Physics Communications, 2004, 164(1/3): 183-188. doi: 10.1016/j.cpc.2004.06.028
|
| [147] |
Welch D R, Rose D V, Cuneo M E, et al. Integrated simulation of the generation and transport of proton beams from laser-target interaction[J]. Physics of Plasmas, 2006, 13: 063105. doi: 10.1063/1.2207587
|
| [148] |
Wu D, He X T, Yu W, et al. Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: the role of atomic processes[J]. High Power Laser Science and Engineering, 2018, 6: e50. doi: 10.1017/hpl.2018.41
|
| [149] |
Wu D, He X T, Yu W, et al. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations[J]. Physical Review E, 2017, 95: 023208. doi: 10.1103/PhysRevE.95.023208
|
| [150] |
Wu D, Yu W, Zhao Y T, et al. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials[J]. Physical Review E, 2019, 100: 013208. doi: 10.1103/PhysRevE.100.013208
|
| [151] |
Wu D, Yu W, Fritzsche S, et al. High-order implicit particle-in-cell method for plasma simulations at solid densities[J]. Physical Review E, 2019, 100: 013207. doi: 10.1103/PhysRevE.100.013207
|
| [152] |
Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312. doi: 10.1103/physreve.102.033312
|
| [153] |
Pelliccia D, Paganin D M. X-ray phase imaging with a laboratory source using selective reflection from a mirror[J]. Optics Express, 2013, 21(8): 9308-9314. doi: 10.1364/OE.21.009308
|
| [154] |
Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004
|
| [155] |
Magesh Kumar K K, Tripathi V K. High power laser coupling to carbon nano-tubes and ion Coulomb explosion[J]. Physics of Plasmas, 2013, 20: 092103. doi: 10.1063/1.4819778
|