Volume 33 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Meng Xuesong, Li Guangrong, Zhao Zhenguo, et al. 3D parallel full electromagnetic particle-in-cell method for simulating responses of cavity internal electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123014. doi: 10.11884/HPLPB202133.210351
Citation: Meng Xuesong, Li Guangrong, Zhao Zhenguo, et al. 3D parallel full electromagnetic particle-in-cell method for simulating responses of cavity internal electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123014. doi: 10.11884/HPLPB202133.210351

3D parallel full electromagnetic particle-in-cell method for simulating responses of cavity internal electromagnetic pulse

doi: 10.11884/HPLPB202133.210351
  • Received Date: 2021-08-13
  • Rev Recd Date: 2021-11-18
  • Available Online: 2021-12-04
  • Publish Date: 2021-12-15
  • Cavity internal electromagnetic pulse (IEMP) is generated by the irradiation of X-rays on cavities, such as spacecrafts. It would disturb the normal operation of electrical systems inside spacecrafts and further affect their survival. In this paper, we present a 3D parallel full electromagnetic particle-in-cell (PIC) method for simulating cavity IEMP responses. In the proposed method, the finite difference time domain (FDTD) method and the PIC method are used to solve the coupling between the formation of transient electromagnetic fields and the movement of particles; the effective current distribution method is adopted to compute the source of electromagnetic fields, which is the current density. The proposed method is coded based on JASMIN, so it supports massively parallel computing and could be used to simulate cavity IEMP responses with hundreds of millions mesh cells and hundreds of millions particles. In the end, the proposed method is applied to compute the IEMP responses of a cylinder irradiated by pulsed X-rays. The results agree well with those from literature, verifying the accuracy of the proposed method.
  • loading
  • [1]
    Higgins D, Lee K, Marin L. System-generated EMP[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797
    [2]
    Wilson A. Theoretical studies of SGEMP field generation[R]. Theoretical Notes, TN-275, 1974.
    [3]
    Little R G, Face S H, Lowell R A, et al. IEMP/SGEMP simulation program[R]. Bedford: Simulation Physics, Inc. , 1977.
    [4]
    Brumley F B, Evans D C, Mangan D L. IEMP studies of a dielectric-filled cavity: a comparison of experiment and theory[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 48-57. doi: 10.1109/TNS.1973.4327372
    [5]
    Turner C D, Seidel D B, Pasik M F. EMPHASIS/Nevada UTDEM user guide. version 2.0[R]. SAND2011-6644, 2011.
    [6]
    马良, 程引会, 吴伟, 等. 腔体系统电磁脉冲模拟中的电子发射面[J]. 强激光与粒子束, 2012, 24(12):2915-2919. (Ma Liang, Cheng Yinhui, Wu Wei, et al. Electron emission boundary in cavity system generate electromagnetic pulse simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2915-2919 doi: 10.3788/HPLPB20122412.2915
    [7]
    徐志谦, 孟萃, 刘以农. 用粒子模拟方法研究SG-III装置的腔体SGEMP[J]. 太赫兹科学与电子信息学报, 2018, 16(6):1120-1124. (Xu Zhiqian, Meng Cui, Liu Yinong. Study on cavity SGEMP of the SG-III facility by particle-in-cell method[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(6): 1120-1124 doi: 10.11805/TKYDA201806.1120
    [8]
    Xu Zhiqian, Meng Cui, Jiang Yunsheng, et al. 3-D simulation of cavity SGEMP interference generated by pulsed X-rays[J]. IEEE Transactions on Nuclear Science, 2020, 67(2): 425-433. doi: 10.1109/TNS.2020.2963983
    [9]
    Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. JASMIN: A parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4(4): 480-488. doi: 10.1007/s11704-010-0120-5
    [10]
    JASMIN webpage, 2020[EB/OL]. http://www.caep-scns.ac.cn/JASMIN.php.
    [11]
    Taflove A, Hagness S C. Computational electrodynamics: the finite-difference time-domain method[R]. Boston: Artech House, 2000.
    [12]
    Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. Hoboken: CRC Press, 2004.
    [13]
    银燕, 常文蔚, 徐涵, 等. 等离子体粒子模拟中的有效电流分配方法[J]. 计算物理, 2007, 24(6):655-659. (Yin Yan, Chang Wenwei, Xu Han, et al. Charge-conserving current assignment algorithm in particle simulation of plasma[J]. Chinese Journal of Computational Physics, 2007, 24(6): 655-659 doi: 10.3969/j.issn.1001-246X.2007.06.004
    [14]
    系统电磁脉冲效应模拟软件(SGEMP-NSSv1.0). 计算机软件著作权: 2020SR1834377[P]. 2020

    System Generated Electromagnetic Pulse Numerical Simulation Software (SGEMP-NSS v1.0). Copyright registration of computer programs in China: 2020SR1834377[P]. 2020.
    [15]
    肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析[J]. 计算机辅助设计与图形学学报, 2014, 26(5):675-686. (Xiao Li, Cao Xiaolin, Wang Huawei, et al. Large-scale data visual analysis for numerical simulation of laser fusion[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675-686
    [16]
    TeraVAP webpage, 2020[EB/OL]. http://www.caep-scns.ac.cn/TeraVAP.php.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1032) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return