Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Lu Honglin, Wu Xinjie, Zhang Debin, et al. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36: 025021. doi: 10.11884/HPLPB202436.230171
Citation: Lu Honglin, Wu Xinjie, Zhang Debin, et al. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36: 025021. doi: 10.11884/HPLPB202436.230171

Modeling and analysis of power processing unit based on secondary-side LLC resonant converter

doi: 10.11884/HPLPB202436.230171
  • Received Date: 2023-06-08
  • Accepted Date: 2023-09-15
  • Rev Recd Date: 2023-09-14
  • Available Online: 2023-09-18
  • Publish Date: 2024-01-12
  • With the continuous development of aerospace technology, the demand for Hall-electric propulsion power processing units (PPUs) in spacecraft is constantly increasing, and high-gain, high-power and high-efficiency PPUs have become the mainstream direction of research. The LLC topology enables soft switching over the full load range and therefore offers broad application prospects in PPU anode power supplies. Due to its primary and secondary gain characteristics, the primary LLC brings great challenges to the resonant inductance design of the high gain converter of the anode power supply. In view of the above problems, this paper proposes an improved secondary LLC resonant topology, which retains the soft switching characteristics of the primary LLC resonant circuit while effectively solving the resonant inductor design problem, so that the PPU anode power supply has high gain performance. In this paper, the mathematical model of the secondary LLC topology is first established by using the time domain analysis method, and then the calculation method of the peak gain is given on the basis of the model, and finally the correctness of the built model is verified by a prototype and the validity of the secondary LLC circuit is verified.
  • loading
  • [1]
    陈新华, 田希晖, 苏凌宇, 等. 航天器推进理论[M]. 北京: 国防工业出版社, 2014: 1-2

    Chen Xinhua, Tian Xihui, Su Lingyu, et al. Theory of spacecraft propulsion[M]. Beijing: National Defense Industry Press, 2014: 1-2
    [2]
    李峰, 康庆, 邢杰, 等. 大功率电推进电源处理单元技术[J]. 北京航空航天大学学报, 2016, 42(8):1575-1583

    Li Feng, Kang Qing, Xing Jie, et al. Technology for power processing unit used in high power electric propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1575-1583
    [3]
    张保平, 阮新波, 高波, 等. 空间电推进系统电源处理单元技术发展综述[J]. 电源学报, 2022, 20(5):42-50

    Zhang Baoping, Ruan Xinbo, Gao Bo, et al. Review of development of power processing unit technology for aerospace electric propulsion system[J]. Journal of Power Supply, 2022, 20(5): 42-50
    [4]
    Bozak K E, Piñero L, Scheidegger R, et al. High input voltage, silicon carbide power processing unit performance demonstration[C]//Proceedings of the 13th International Energy Conversion Engineering Conference. 2015: 3900.
    [5]
    Santiago W, Bozak K E, Piñero L R, et al. High input voltage, power processing unit performance demonstration[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016: 5033.
    [6]
    José Antonio G A. Review of ESA experimental research activities for electric propulsion[J]. Review of Esa Experimental Research Activities for Electric Propulsion, 2012.
    [7]
    Soendker E, Hablitzel S, Tolentino A, et al. Power processing and flow control for a 100 kW Hall thruster system[C]//Proceedings of 2018 Joint Propulsion Conference. 2018: 4419.
    [8]
    王少宁, 王卫国. 适用于30 cm离子推力器的5 kW电源处理单元设计[J]. 航天器工程, 2013, 22(5):74-79

    Wang Shaoning, Wang Weiguo. Design of a 5 kW modular power processing unit for 30cm ion thruster[J]. Spacecraft Engineering, 2013, 22(5): 74-79
    [9]
    马季军, 屈诚志, 吴晨昊, 等. 大功率处理单元阳极电源模块的研究[J]. 载人航天, 2019, 25(6):749-754

    Ma Jijun, Qu Chengzhi, Wu Chenhao, et al. Research on anode power supply for high power processing unit[J]. Manned Spaceflight, 2019, 25(6): 749-754
    [10]
    Kim E H, Kwon B H. Zero-voltage-and zero-current-switching full-bridge converter with secondary resonance[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 1017-1025. doi: 10.1109/TIE.2009.2029581
    [11]
    Ruan Xinbo, Yan Yangguang. A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg[J]. IEEE Transactions on Industrial Electronics, 2001, 48(4): 777-785. doi: 10.1109/41.937410
    [12]
    Zhang Junming, Zhang Fan, Xie Xiaogao, et al. A novel ZVS DC/DC converter for high power applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 420-429. doi: 10.1109/TPEL.2003.823248
    [13]
    Wu Xinke, Zhao Chen, Zhang Junming, et al. A novel phase shift controlled ZVZCS full bridge DC-DC converter: Analysis and design considerations[C]//Proceedings of the 39th IAS Annual Meeting Conference Record of the 2004 IEEE Industry Applications Conference. 2004: 1790-1796.
    [14]
    吕文琪. 两级式宽输入电压范围阳极电源研究[D]. 深圳: 哈尔滨工业大学, 2021

    Lv Wenqi. Research on two-stage anode power supply with wide input voltage range[D]. Shenzhen: Harbin Institute of Technology, 2021
    [15]
    陈乃铭. 航天用宽输入宽输出电压范围的两级式直流变换器研究[D]. 南京: 南京航空航天大学, 2019: 12-69

    Chen Naiming. Research on two-stage DC/DC converter with wide input and wide output voltage range for aerospace application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 12-69
    [16]
    袁义生, 罗峰, 胡盼安. 一种桥型副边LLC谐振直流-直流变换器[J]. 中国电机工程学报, 2014, 34(36):6415-6425

    Yuan Yisheng, Luo Feng, Hu Pan’an. One bridge-type secondary-side LLC resonant DC-DC converter[J]. Proceedings of the CSEE, 2014, 34(36): 6415-6425
    [17]
    Jia Pengyu, Su Zhe, Shao Tiancong, et al. An isolated high step-up converter based on the active secondary-side quasi-resonant loops[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 659-673. doi: 10.1109/TPEL.2021.3098852
    [18]
    刘小越, 谢运祥, 陈兵. 两种隔离式DC/DC变换器次级整流电路的比较[J]. 电气开关, 2008, 46(1):8-11

    Liu Xiaoyue, Xie Yunxiang, Chen Bing. Comparison of two isolated DC/DC conveter secondary rectifier[J]. Electric Switchgear, 2008, 46(1): 8-11
    [19]
    干方宇. 高功率密度/宽输入电压范围LLC谐振变换器的研究[D]. 杭州: 浙江大学, 2022

    Gan Fangyu. Research on high power density/wide input voltage range LLC resonant converter[D]. Hangzhou: Zhejiang University, 2022
    [20]
    闫振雷. LLC谐振变换器的简化时域分析及参数设计[D]. 北京: 北京交通大学, 2021

    Yan Zhenlei. Simplified time domain analysis and parameters design of LLC resonant converter[D]. Beijing: Beijing Jiaotong University, 2021
    [21]
    胡海兵, 王万宝, 孙文进, 等. LLC谐振变换器效率优化设计[J]. 中国电机工程学报, 2013, 33(18):48-56

    Hu Haibing, Wang Wanbao, Sun Wenjin, et al. Optimal efficiency design of LLC resonant converters[J]. Proceedings of the CSEE, 2013, 33(18): 48-56
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (847) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return