Volume 36 Issue 8
Jul.  2024
Turn off MathJax
Article Contents
Xiong Chuanyu, Liao Xiaohong, He Shiying, et al. EMD-FFT-SARIMA photovoltaic power generation prediction model using fast fourier transform optimization cycle parameters[J]. High Power Laser and Particle Beams, 2024, 36: 085001. doi: 10.11884/HPLPB202436.230349
Citation: Xiong Chuanyu, Liao Xiaohong, He Shiying, et al. EMD-FFT-SARIMA photovoltaic power generation prediction model using fast fourier transform optimization cycle parameters[J]. High Power Laser and Particle Beams, 2024, 36: 085001. doi: 10.11884/HPLPB202436.230349

EMD-FFT-SARIMA photovoltaic power generation prediction model using fast fourier transform optimization cycle parameters

doi: 10.11884/HPLPB202436.230349
  • Received Date: 2023-10-11
  • Accepted Date: 2024-03-11
  • Rev Recd Date: 2024-03-11
  • Available Online: 2024-05-27
  • Publish Date: 2024-07-04
  • In this paper, the photovoltaic (PV) power prediction model is optimized according to the characteristics of PV output units in distributed energy industrial parks to provide data support for the subsequent dispatching strategy. The EMD-SARIMA forecasting model is a combination of Empirical Mode Decomposition (EMD) and Seasonal Autoregressive Integrated Moving Average (SARIMA). In the model, the problem of determining the period of each IMF component of the signal component is proposed, the period T calculation method incorporating fast Fourier transform (FFT) is proposed, and the obtained period is fed into SARIMA as an input parameter together with the IMF sequence for prediction, which constitutes the EMD-FFT-SARIMA prediction model. Then, the prediction results corresponding to each IMF are superimposed and reconstructed to obtain the final prediction results. The error calculation of the prediction results reveals that the root mean square error (RMSE) decreases from 120.6 MW to 19.3 MW, and the mean absolute error (MAE) decreases from 52.87 MW to 12.3 MW.
  • loading
  • [1]
    张晓燕, 林鸿才, 黄波, 等. 基于最优交集相似日的EMD-SVR短期负荷预测[J]. 海峡科学, 2023(7):30-35,41 doi: 10.3969/j.issn.1673-8683.2023.07.007

    Zhang Xiaoyan, Lin Hongcai, Huang Bo, et al. Short-term load prediction of EMD-SVR based on optimal intersection similar day[J]. Straits Science, 2023(7): 30-35,41 doi: 10.3969/j.issn.1673-8683.2023.07.007
    [2]
    何坚, 王晓芳. 基于ARIMA和LS-SVM组合模型的短期风速预测[J]. 机电工程技术, 2023, 52(8):30-34

    He Jian, Wang Xiaofang. Short-term wind speed prediction based on ARIMA and LS-SVM composite model[J]. Mechanical & Electrical Engineering Technology, 2023, 52(8): 30-34
    [3]
    邵必林, 程婉荣. 基于SARIMA模型的短期天然气负荷区间预测[J]. 计算机与现代化, 2023(8):54-59 doi: 10.3969/j.issn.1006-2475.2023.08.009

    Shao Bilin, Cheng Wanrong. Short-term natural gas load forecasting based on SARIMA model[J]. Computer and Modernization, 2023(8): 54-59 doi: 10.3969/j.issn.1006-2475.2023.08.009
    [4]
    娄泽生, 张高博, 贾相宇, 等. 基于FFT和小波变换的台风天气GNSS ZTD周期特征分析[J]. 大地测量与地球动力学, 2023, 43(10):1032-1038

    Lou Zesheng, Zhang Gaobo, Jia Xiangyu, et al. Typhoon weather GNSS ZTD cycle characteristics analysis based on FFT and wavelet transform[J]. Journal of Geodesy and Geodynamics, 2023, 43(10): 1032-1038
    [5]
    王堃, 郑晨, 张立中, 等. 一种基于SARIMA-LSTM模型的电网主机负载预测方法[J]. 计算机工程与科学, 2022, 44(11):2064-2070

    Wang Kun, Zheng Chen, Zhang Lizhong, et al. A load forecasting method for power grid host based on SARIMA-LSTM model[J]. Computer Engineering and Science, 2022, 44(11): 2064-2070
    [6]
    李军, 梁宵, 梁嘉城, 等. 基于ARIMA-GM改进算法的建筑负荷预测[J]. 电气自动化, 2023, 45(6):59-61

    Li Jun, Liang Xiao, Liang Jiacheng, et al. Building load forecasting based on improved ARIMA-GM algorithm[J]. Electrical Automation, 2023, 45(6): 59-61
    [7]
    周亚中, 何怡刚, 邢致恺, 等. 基于IDBO-ARIMA的电力变压器振动信号预测[J]. 电子测量与仪器学报, 2023, 37(8):11-20

    Zhou Yazhong, He Yigang, Xing Zhikai, et al. Power transformer vibration signal prediction based on IDBO-ARIMA[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(8): 11-20
    [8]
    郭忠臣, 邹慧. 基于快速傅里叶变换法的地球自转参数周期性研究[J]. 宿州学院学报, 2018, 33(1):114-117

    Guo Zhongchen, Zou Hui. Research on earth rotation parameters periodicity based on fast Fourier transform method[J]. Journal of Suzhou University, 2018, 33(1): 114-117
    [9]
    曹庆皇, 陈晓霞, 刘怀彦. 基于SARIMA-LSTM组合模型的网络流量预测方法[J]. 江苏通信, 2023, 39(2):87-91 doi: 10.3969/j.issn.1007-9513.2023.02.019

    Cao Qinghuang, Chen Xiaoxia, Liu Huaiyan. A network traffic prediction method based on SARIMA-LSTM combined model[J]. Jiangsu Communication, 2023, 39(2): 87-91 doi: 10.3969/j.issn.1007-9513.2023.02.019
    [10]
    田密, 熊自民. 基于MARS与AIC准则的泥石流冲出距离数据驱动预测方法[J/OL]. 武汉大学学报(工学版): 1-11[2023-12-29]. http://kns.cnki.net/kcms/detail/42.1675.T.20230828.0924.002.html

    Tian Mi, Xiong Zimin. A data-driven prediction method of debris flow runout distance based on MARS and AIC criteria[J/OL]. Engineering Journal of Wuhan University, 1-11[2023-12-29]. http://kns.cnki.net/kcms/detail/42.1675.T.20230828.0924.002.html.
    [11]
    李宏玉, 彭康, 宋来鑫, 等. 基于EMD-BiLSTM-ANFIS的负荷区间预测[J]. 吉林大学学报(信息科学版), 2024, 42(1):176-185

    Li Hongyu, Peng Kang, Song Laixin, et al. Load interval forecast based on EMD-BiLSTM-ANFIS[J]. Journal of Jilin University (Information Science Edition), 2024, 42(1): 176-185
    [12]
    梁基重, 晋涛, 牛曙, 等. 基于EMD-FFT特征提取的GIS机械缺陷诊断方法研究[J]. 电力科学与技术学报, 2023, 38(3):216-223

    Liang Jichong, Jin Tao, Niu Shu, et al. Research on GIS mechanical defect diagnosis method based on EMD-FFT feature extraction[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 216-223
    [13]
    胡慧江, 李利平, 靳昊, 等. 基于高阶统计量偏斜度和赤池信息准则的突涌水微振信号初至拾取方法[J]. 工业建筑, 2023, 53(5):132-136,195

    Hu Huijiang, Li Liping, Jin Hao, et al. An initial arrival-moment pickup method of microvibration signals from water inrush based on PAI-S and AIC[J]. Industrial Construction, 2023, 53(5): 132-136,195
    [14]
    张旭宁. 基于EMD-SARIMA模型的铁路商品汽车运量预测[J]. 物流技术, 2022, 41(7):87-91

    Zhang Xuning. Prediction of railway transportation volume of commodity vehicles based on EMD-SARIMA[J]. Logistics Technology, 2022, 41(7): 87-91
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article views (817) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return