Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361
Citation: Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361

Development of the NFTHz accelerator beam profile measurement system

doi: 10.11884/HPLPB202436.230361
  • Received Date: 2023-10-19
  • Accepted Date: 2023-12-11
  • Rev Recd Date: 2023-12-21
  • Available Online: 2024-02-28
  • Publish Date: 2024-03-15
  • The “Composite Light Source” project of the National Synchrotron Radiation Laboratory, Terahertz Near-Field High-Flux Material Property Testing System, consists of an approximately 3-meter electron linear accelerator. To characterize the performance of the accelerator and monitor the status of the beam, it is necessary to measure the beam size. Specifically designed for the terahertz linear accelerator, a beam size measurement system based on the EPICS distributed system has been developed. A beam spot detector is taken for the conversion of the beam spot into an optical spot and a remote mirror is taken to image the optical spot onto a CCD camera for image acquisition. Subsequently, the camera-captured image data is integrated into the EPICS database using ADAravis. Due to the dark current and radiation environment, salt-and-pepper noise is present in the acquired images. Therefore, a Convolutional Neural Network (CNN) is employed to suppress the salt-and-pepper noise in the images. Finally, Gaussian fitting is applied to calculate the beam cross-sectional dimensions from the images. The experimental results indicate that the CNN can effectively eliminate salt-and-pepper noise, and the resolution of this system is 15.8 μm, which satisfies the design requirement.
  • loading
  • [1]
    Tian Huiyan, Huang Guorong, Xie Fengxin, et al. THz biosensing applications for clinical laboratories: bottlenecks and strategies[J]. TrAC Trends in Analytical Chemistry, 2023, 163: 117057. doi: 10.1016/j.trac.2023.117057
    [2]
    Lejeune C, Aubert J, Septier A. Emittance and brightness: definitions and measurements in applied charged particle optics part A[M]. New York: Academic Press, 1980: 159.
    [3]
    Lawson J D. The physics of charged-particle beams[M]. Oxford: Clarendon Press, 1988: 156.
    [4]
    Zhu Dechong, Yue Junhui, Sui Yanfeng, et al. Performance of beam size monitor based on Kirkpatrick–Baez mirror at SSRF[J]. Nuclear Science and Techniques, 2018, 29: 148. doi: 10.1007/s41365-018-0477-y
    [5]
    唐兵. THz-FEL直线加速器在线控制与测量系统改进设计[D]. 武汉: 华中科技大学, 2018

    Tang Bing. Improved design of the online control and measurement system for THz-FEL LINAC[D]. Wuhan: Huazhong University of Science & Technology, 2018
    [6]
    乔显杰, 李刚. 基于EPICS的StreamDevice的应用研究[J]. 核电子学与探测技术, 2011, 31(10):1073-1076

    Qiao Xianjie, Li Gang. Research of StreamDevice applications based on EPICS[J]. Nuclear Electronics & Detection Technology, 2011, 31(10): 1073-1076
    [7]
    Hu Zheng, Mi Qingru, Zheng Lifang, et al. EPICS data archiver at SSRF beamlines[J]. Nuclear Science and Techniques, 2014, 25: 020103.
    [8]
    Ma Tianji, Yang Yongliang, Sun Baogen, et al. Development and application of the new BPM system data processing program at Hefei Light Source[J]. Nuclear Science and Techniques, 2012, 23(5): 261-266.
    [9]
    Zhang Qian, Huang Chao, Yang Lihua, et al. Salt and pepper noise removal method based on graph signal reconstruction[J]. Digital Signal Processing, 2023, 135: 103941. doi: 10.1016/j.dsp.2023.103941
    [10]
    Raja J, Moorthi K, Rajendran A. De-noising of salt and pepper noise using deep learning-based alpha-guided grey wolf optimization[J]. Applied Soft Computing, 2022, 130: 109649. doi: 10.1016/j.asoc.2022.109649
    [11]
    Akkoul S, Ledee R, Leconge R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587-590. doi: 10.1109/LSP.2010.2048646
    [12]
    Weiss B. Fast median and bilateral filtering[J]. ACM Transactions on Graphics, 2006, 25(3): 519-526. doi: 10.1145/1141911.1141918
    [13]
    Sa P K, Majhi B. An improved adaptive impulsive noise suppression scheme for digital images[J]. AEU-International Journal of Electronics and Communications, 2010, 64(4): 322-328.
    [14]
    Fu Bo, Zhao Xiaoyang, Li Yi, et al. A convolutional neural networks denoising approach for salt and pepper noise[J]. Multimedia Tools and Applications, 2019, 78(21): 30707-30721. doi: 10.1007/s11042-018-6521-4
    [15]
    Prasetyo H, Hsia C H, Yu Kunyi. TV-based impulsive noise reduction with Weber Law detector[J]. Journal of Imaging Science and Technology, 2019, 63: jist0605.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (454) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return