| Citation: | Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004. doi: 10.11884/HPLPB202436.230361 |
| [1] |
Tian Huiyan, Huang Guorong, Xie Fengxin, et al. THz biosensing applications for clinical laboratories: bottlenecks and strategies[J]. TrAC Trends in Analytical Chemistry, 2023, 163: 117057. doi: 10.1016/j.trac.2023.117057
|
| [2] |
Lejeune C, Aubert J, Septier A. Emittance and brightness: definitions and measurements in applied charged particle optics part A[M]. New York: Academic Press, 1980: 159.
|
| [3] |
Lawson J D. The physics of charged-particle beams[M]. Oxford: Clarendon Press, 1988: 156.
|
| [4] |
Zhu Dechong, Yue Junhui, Sui Yanfeng, et al. Performance of beam size monitor based on Kirkpatrick–Baez mirror at SSRF[J]. Nuclear Science and Techniques, 2018, 29: 148. doi: 10.1007/s41365-018-0477-y
|
| [5] |
唐兵. THz-FEL直线加速器在线控制与测量系统改进设计[D]. 武汉: 华中科技大学, 2018
Tang Bing. Improved design of the online control and measurement system for THz-FEL LINAC[D]. Wuhan: Huazhong University of Science & Technology, 2018
|
| [6] |
乔显杰, 李刚. 基于EPICS的StreamDevice的应用研究[J]. 核电子学与探测技术, 2011, 31(10):1073-1076
Qiao Xianjie, Li Gang. Research of StreamDevice applications based on EPICS[J]. Nuclear Electronics & Detection Technology, 2011, 31(10): 1073-1076
|
| [7] |
Hu Zheng, Mi Qingru, Zheng Lifang, et al. EPICS data archiver at SSRF beamlines[J]. Nuclear Science and Techniques, 2014, 25: 020103.
|
| [8] |
Ma Tianji, Yang Yongliang, Sun Baogen, et al. Development and application of the new BPM system data processing program at Hefei Light Source[J]. Nuclear Science and Techniques, 2012, 23(5): 261-266.
|
| [9] |
Zhang Qian, Huang Chao, Yang Lihua, et al. Salt and pepper noise removal method based on graph signal reconstruction[J]. Digital Signal Processing, 2023, 135: 103941. doi: 10.1016/j.dsp.2023.103941
|
| [10] |
Raja J, Moorthi K, Rajendran A. De-noising of salt and pepper noise using deep learning-based alpha-guided grey wolf optimization[J]. Applied Soft Computing, 2022, 130: 109649. doi: 10.1016/j.asoc.2022.109649
|
| [11] |
Akkoul S, Ledee R, Leconge R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587-590. doi: 10.1109/LSP.2010.2048646
|
| [12] |
Weiss B. Fast median and bilateral filtering[J]. ACM Transactions on Graphics, 2006, 25(3): 519-526. doi: 10.1145/1141911.1141918
|
| [13] |
Sa P K, Majhi B. An improved adaptive impulsive noise suppression scheme for digital images[J]. AEU-International Journal of Electronics and Communications, 2010, 64(4): 322-328.
|
| [14] |
Fu Bo, Zhao Xiaoyang, Li Yi, et al. A convolutional neural networks denoising approach for salt and pepper noise[J]. Multimedia Tools and Applications, 2019, 78(21): 30707-30721. doi: 10.1007/s11042-018-6521-4
|
| [15] |
Prasetyo H, Hsia C H, Yu Kunyi. TV-based impulsive noise reduction with Weber Law detector[J]. Journal of Imaging Science and Technology, 2019, 63: jist0605.
|