| Citation: | Qiu Congpan, Liu Guodong, Zhang Dayong, et al. Research progress in deep learning for wavefront reconstruction and wavefront prediction[J]. High Power Laser and Particle Beams, 2024, 36: 071002. doi: 10.11884/HPLPB202436.230430 |
| [1] |
姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45:170489
Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45: 170489
|
| [2] |
Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990, 348(6298): 221-224. doi: 10.1038/348221a0
|
| [3] |
Nemoto K, Fujii T, Goto N, et al. Transformation of a laser beam intensity profile by a deformable mirror[J]. Optics Letters, 1996, 21(3): 168-170. doi: 10.1364/OL.21.000168
|
| [4] |
Amirabadi M A, Kahaei M H, Nezamalhosseini S A. Deep learning based detection technique for FSO communication systems[J]. Physical Communication, 2020, 43: 101229. doi: 10.1016/j.phycom.2020.101229
|
| [5] |
Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. doi: 10.1038/s41586-019-1923-7
|
| [6] |
Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991, 351(6324): 300-302. doi: 10.1038/351300a0
|
| [7] |
Li Zhaokun, Zhao Xiaohui. BP artificial neural network based wave front correction for sensor-less free space optics communication[J]. Optics Communications, 2017, 385: 219-228. doi: 10.1016/j.optcom.2016.10.037
|
| [8] |
Jia Peng, Ma Mingyang, Cai Dongmei, et al. Compressive Shack–Hartmann wavefront sensor based on deep neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(3): 3194-3203. doi: 10.1093/mnras/staa4045
|
| [9] |
Guo Hong, Korablinova N, Ren Qiushi, et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 2006, 14(14): 6456-6462. doi: 10.1364/OE.14.006456
|
| [10] |
Swanson R, Lamb M, Correia C, et al. Wavefront reconstruction and prediction with convolutional neural networks[C]//Proceedings of SPIE 10703, Adaptive Optics Systems VI. 2018: 107031F.
|
| [11] |
DuBose T B, Gardner D F, Watnik A T. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors[J]. Optics Letters, 2020, 45(7): 1699-1702. doi: 10.1364/OL.389895
|
| [12] |
Hu Shuwen, Hu Lejia, Gong Wei, et al. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1277-1288.
|
| [13] |
Hu Lejia, Hu Shuwen, Gong Wei, et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection[J]. Optics Express, 2019, 27(23): 33504-33517. doi: 10.1364/OE.27.033504
|
| [14] |
Hu Lejia, Hu Shuwen, Gong Wei, et al. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 2020, 45(13): 3741-3744. doi: 10.1364/OL.395579
|
| [15] |
He Yulong, Liu Zhiwei, Ning Yu, et al. Deep learning wavefront sensing method for Shack-Hartmann sensors with sparse sub-apertures[J]. Optics Express, 2021, 29(11): 17669-17682. doi: 10.1364/OE.427261
|
| [16] |
Guo Youming, Wu Yu, Li Ying, et al. Deep phase retrieval for astronomical Shack–Hartmann wavefront sensors[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(3): 4347-4354. doi: 10.1093/mnras/stab3690
|
| [17] |
De Bruijne B, Vdovin G, Soloviev O. Extended scene deep learning wavefront sensing[J]. Journal of the Optical Society of America A, 2022, 39(4): 621-627. doi: 10.1364/JOSAA.443436
|
| [18] |
Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238. doi: 10.1364/OL.43.001235
|
| [19] |
Jin Yuncheng, Zhang Yiye, Hu Lejia, et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 2018, 26(23): 30162-30171. doi: 10.1364/OE.26.030162
|
| [20] |
Jin Yuncheng, Chen Jiajia, Wu Chenxue, et al. Wavefront reconstruction based on deep transfer learning for microscopy[J]. Optics Express, 2020, 28(14): 20738-20747. doi: 10.1364/OE.396321
|
| [21] |
Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 2019, 27(8): 10765-10776. doi: 10.1364/OE.27.010765
|
| [22] |
Siddik A B, Sandoval S, Voelz D, et al. Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence[J]. Optics Express, 2023, 31(14): 22903-22913. doi: 10.1364/OE.493229
|
| [23] |
Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/OE.27.000240
|
| [24] |
Wang Kaiqiang, Zhang Mengmeng, Tang Ju, et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2021, 2: 8. doi: 10.1186/s43074-021-00030-4
|
| [25] |
Ju Guohao, Qi Xin, Ma Hongcai, et al. Feature-based phase retrieval wavefront sensing approach using machine learning[J]. Optics Express, 2018, 26(24): 31767-31783. doi: 10.1364/OE.26.031767
|
| [26] |
Xin Qi, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 2019, 27(18): 26102-23119. doi: 10.1364/OE.27.026102
|
| [27] |
Ma Huimin, Liu Haiqiu, Qiao Yan, et al. Numerical study of adaptive optics compensation based on convolutional neural networks[J]. Optics Communications, 2019, 433: 283-289. doi: 10.1016/j.optcom.2018.10.036
|
| [28] |
Guo Hongyang, Xu Yangjie, Li Qing, et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 2019, 19: 3533. doi: 10.3390/s19163533
|
| [29] |
Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 2020, 20: 4877. doi: 10.3390/s20174877
|
| [30] |
Jorgenson M B, Aitken G J M. Prediction of atmospherically induced wave-front degradations[J]. Optics Letters, 1992, 17(7): 466-468. doi: 10.1364/OL.17.000466
|
| [31] |
Montera D A, Welsh B M, Roggemann M C, et al. Processing wave-front-sensor slope measurements using artificial neural networks[J]. Applied Optics, 1996, 35(21): 4238-4251. doi: 10.1364/AO.35.004238
|
| [32] |
McGuire P C, Sandler D G, Lloyd-Hart M, et al. Adaptive optics: neural network wavefront sensing, reconstruction, and prediction[C]//Proceedings of the 194th W. E. Heraeus Seminar. 1999: 97-138.
|
| [33] |
Gallant P J, Aitken G J M. Genetic algorithm design of complexity-controlled time-series predictors[C]//2003 IEEE XIII Workshop on Neural Networks for Signal Processing. 2003: 769-778.
|
| [34] |
颜召军, 李新阳. 基于神经网络的自适应光学系统变形镜控制电压预测方法[J]. 光学学报, 2010, 30(4):911-916 doi: 10.3788/AOS20103004.0911
Yan Zhaojun, Li Xinyang. Neural network prediction algorithm for control voltage of deformable mirror in adaptive optical system[J]. Acta Optica Sinica, 2010, 30(4): 911-916 doi: 10.3788/AOS20103004.0911
|
| [35] |
史晓雨, 冯勇, 陈颖, 等. 自适应光学系统变形镜控制电压预测[J]. 强激光与粒子束, 2012, 24(6):1281-1286 doi: 10.3788/HPLPB20122406.1281
Shi Xiaoyu, Feng Yong, Chen Ying, et al. Predicting control voltages of deformable mirror in adaptive optical system[J]. High Power Laser and Particle Beams, 2012, 24(6): 1281-1286 doi: 10.3788/HPLPB20122406.1281
|
| [36] |
史晓雨, 冯勇, 陈颖, 等. 一种基于并行化方法的自适应光学闭环预测控制器[J]. 光学学报, 2012, 32:0801005 doi: 10.3788/AOS201232.0801005
Shi Xiaoyu, Feng Yong, Chen Ying, et al. A novel predictive controller in the adaptive optics control system based on parallelization method[J]. Acta Optica Sinica, 2012, 32: 0801005 doi: 10.3788/AOS201232.0801005
|
| [37] |
Sun Zhi, Chen Ying, Li Xinyang, et al. A Bayesian regularized artificial neural network for adaptive optics forecasting[J]. Optics Communications, 2017, 382: 519-527. doi: 10.1016/j.optcom.2016.08.035
|
| [38] |
Wang Ning, Zhu Licheng, Ma Shuai, et al. Deep learning-based prediction algorithm on atmospheric turbulence-induced wavefront for adaptive optics[J]. IEEE Photonics Journal, 2022, 14(5): 1-10.
|
| [39] |
Chen Ying. Voltages prediction algorithm based on LSTM recurrent neural network[J]. Optik, 2020, 220: 164869. doi: 10.1016/j.ijleo.2020.164869
|
| [40] |
Chen Ying. LSTM recurrent neural network prediction algorithm based on Zernike modal coefficients[J]. Optik, 2020, 203: 163796. doi: 10.1016/j.ijleo.2019.163796
|
| [41] |
Liu Xuewen, Morris T, Saunter C, et al. Wavefront prediction using artificial neural networks for open-loop adaptive optics[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(1): 456-464. doi: 10.1093/mnras/staa1558
|
| [42] |
Wu Ji, Tang Ju, Zhang Mengmeng, et al. PredictionNet: a long short-term memory-based attention network for atmospheric turbulence prediction in adaptive optics[J]. Applied Optics, 2022, 61(13): 3687-3694. doi: 10.1364/AO.453929
|
| [43] |
Swanson R, Lamb M, Correia C M, et al. Closed loop predictive control of adaptive optics systems with convolutional neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(2): 2944-2954. doi: 10.1093/mnras/stab632
|