Volume 34 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Hong Yanji, Mao Chentao, Feng Xiaohui. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275
Citation: Hong Yanji, Mao Chentao, Feng Xiaohui. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34: 011002. doi: 10.11884/HPLPB202234.210275

Status and progress of pulsed laser ablation propulsion technology in the field of aerospace

doi: 10.11884/HPLPB202234.210275
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-09-22
  • Available Online: 2021-09-16
  • Publish Date: 2022-01-15
  • Pulsed laser ablation propulsion has the characteristics of high specific impulse and precise and controllable thrust. It can be used not only for launching payload, but also for satellite drive, even for deflecting the orbit of asteroid, whose surface material would be ablated as propellant. Therefore, pulsed laser ablation propulsion has attracted more and more attention in the aerospace field. Focusing on laser launch vehicle of single stage to orbit, transmission to geosynchronous orbit and Mars orbit; laser plasma thrusters for the attitude and orbit control of spacecraft, laser-electric hybrid acceleration systems; laser ablation for orbit manipulation of centimeter scale space debris and attitude manipulation of larger space debris; laser ablation for deflecting the orbit of asteroid, this paper systematically and comprehensively summarizes the research status and progress of pulsed laser ablation propulsion technology in the field of aerospace, and analyzes in detail the key problems such as the average power, wavelength, pulse width of laser and the selection of propellant.
  • loading
  • [1]
    Kantrowitz A. Propulsion to orbit by ground-based lasers[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
    [2]
    Pirri A N, Weiss R F. Laser propulsion[C]//AIAA 5th Fluid and Plasma Dynamics Conference. Boston: AIAA, 1972.
    [3]
    Phipps C, Birkan M, Bohn W, et al. Review: laser-ablation propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637. doi: 10.2514/1.43733
    [4]
    张楠, 徐智君, 朱晓农, 等. 激光推进技术[J]. 红外与激光工程, 2011, 40(6):1025-1037. (Zhang Nan, Xu Zhijun, Zhu Xiaonong, et al. Laser propulsion technology[J]. Infrared and Laser Engineering, 2011, 40(6): 1025-1037 doi: 10.3969/j.issn.1007-2276.2011.06.009
    [5]
    谭胜, 吴建军, 张宇, 等. 激光支持的空间微推进技术研究进展[J]. 推进技术, 2018, 39(11):2415-2428. (Tan Sheng, Wu Jianjun, Zhang Yu, et al. Research progress of laser-supported space micropropulsion technology[J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428
    [6]
    洪延姬, 金星, 李小将, 等. 临近空间飞行器技术[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Li Xiaojiang, et al. Near space vehicle technology[M]. Beijing: National Defense Industry Press, 2012
    [7]
    洪延姬, 李倩, 王殿恺, 等. 超声速飞行器的激光空气锥减阻方法[M]. 北京: 科学出版社, 2016.

    Hong Yanji, Li Qian, Wang Diankai, et al. Laser air cone drag reduction method for supersonic aircraft[M]. Beijing: Science Press, 2016
    [8]
    洪延姬, 金星, 崔村燕, 等. 先进航天推进技术[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Cui Cunyan, et al. Advanced space propulsion technology[M]. Beijing: National Defense Industry Press, 2012
    [9]
    洪延姬, 金星, 李倩, 等. 吸气式脉冲激光推进导论[M]. 北京: 国防工业出版社, 2012.

    Hong Yanji, Jin Xing, Li Qian, et al. Introduction to inspiratory pulsed laser propulsion[M]. Beijing: National Defense Industry Press, 2012
    [10]
    Myrabo L N, Messitt D G, Mead F B Jr. Ground and flight tests of a laser propelled vehicle[C]//36th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV: AIAA, 1998.
    [11]
    Phipps C, Bonnal C, Masson F, et al. Launching swarms of microsatellites using a 100 kW average power pulsed laser[J]. Journal of the Optical Society of America B, 2018, 35(10): B20-B26. doi: 10.1364/JOSAB.35.000B20
    [12]
    Phipps C R, Bonnal C, Masson F, et al. Transfers from Earth to LEO and LEO to interplanetary space using lasers[J]. Acta Astronautica, 2018, 146: 92-102. doi: 10.1016/j.actaastro.2018.02.018
    [13]
    Phipps C R, Boustie M, Chevalier J M, et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength[J]. Journal of Applied Physics, 2017, 122: 193103. doi: 10.1063/1.4997196
    [14]
    Phipps C R, Reilly J P, Campbell J W. Optimum parameters for laser launching objects into low earth orbit[J]. Laser and Particle Beams, 2000, 18(4): 661-695. doi: 10.1017/S0263034600184101
    [15]
    Phipps C R, Luke J R, Helgeson W, et al. Performance test results for the laser-powered microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 224-234.
    [16]
    Phipps C R, Luke J R, Helgeson W, et al. A ns-pulse laser microthruster[J]. AIP Conference Proceedings, 2006, 830(1): 235-246.
    [17]
    Horisawa H, Igari A, Kawakami M, et al. Discharge characteristics of laser-electric hybrid thrusters[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004.
    [18]
    Horisawa H, Kawakami M, Kimura I, et al. Laser-assisted pulsed plasma thruster for space propulsion applications[J]. Applied Physics A, 2005, 81(2): 303-310. doi: 10.1007/s00339-005-3210-8
    [19]
    Ono T, Uchida Y, Horisawa H, et al. Measurement of ion acceleration characteristics of a laser-electrostatic hybrid microthruster for space propulsion applications[J]. Vacuum, 2008, 83(1): 213-216. doi: 10.1016/j.vacuum.2008.03.098
    [20]
    Osamura A, Sakai T, Horisawa H. Development of a laser-electrostatic hybrid acceleration thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
    [21]
    Horisawa H, Sasaki Y, Funaki I, et al. Electromagnetic acceleration characteristics for a laser-electric hybrid thruster[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford: AIAA, 2008.
    [22]
    Horisawa H, Mashima Y, Yamada O, et al. High ISP mechanism of rectangular laser-electromagnetic hybrid acceleration thruster[C]//32nd International Electric Propulsion Conference. Wiesbaden, 2011.
    [23]
    Akashi N, Oigawa Y, Hosokawa H, et al. Plasma acceleration characteristic of a rectangular laser-electromagnetic hybrid thruster[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014.
    [24]
    Phipps C R, Albrecht G, Friedman H, et al. ORION: clearing near-earth space debris using a 20-kW, 530-nm, earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
    [25]
    Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300. doi: 10.1016/j.asr.2012.02.003
    [26]
    Campbell J W. Project ORION: orbital debris removal using ground-based sensors and lasers[R]. Washington: NASA, 1996.
    [27]
    Phipps C, Reilly P. ORION: clearing near-earth space debris in two years using a 30 kW repetitively pulsed laser[C]//Proceedings of SPIE 3092, XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. 1997: 728-731.
    [28]
    Schall W O. Laser radiation for cleaning space debris from lower earth orbit[J]. Journal of Spacecraft and Rocket, 2002, 39(1): 81-91. doi: 10.2514/2.3785
    [29]
    路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39:021302. (Lu Yong, Liu Xiaoguang, Zhou Yu, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39: 021302
    [30]
    Kumar R, Sedwick R J. Despinning orbital debris before docking using laser ablation[J]. Journal of Spacecraft and Rocket, 2015, 52(4): 1129-1134. doi: 10.2514/1.A33183
    [31]
    洪延姬, 金星, 王广宇, 等. 激光清除空间碎片方法[M]. 北京: 国防工业出版社, 2013.

    Hong Yanji, Jin Xing, Wang Guangyu, et al. Laser method for removing space debris[M]. Beijing: National Defense Industry Press, 2013
    [32]
    洪延姬, 金星, 叶继飞, 等. 天基激光烧蚀操控空间碎片方法[M]. 北京: 科学出版社, 2020.

    Hong Yanji, Jin Xing, Ye Jifei, et al. Space-based laser ablation method for manipulating space debris[M]. Beijing: Science Press, 2016
    [33]
    Vasile M, Gibbings A, Watson I, et al. Improved laser ablation model for asteroid deflection[J]. Acta Astronautica, 2014, 103: 382-394. doi: 10.1016/j.actaastro.2014.01.033
    [34]
    Phipps C. Can lasers play a rôle in planetary defense?[J]. AIP Conference Proceedings, 2010, 1278(1): 502-508.
    [35]
    Vasile M, Maddock C A. Design of a formation of solar pumped lasers for asteroid deflection[J]. Advances in Space Research, 2012, 50(7): 891-905. doi: 10.1016/j.asr.2012.06.001
    [36]
    Maddock C, Vasile M, Summerer L. Conceptual design of a multi-mirror system for asteroid deflection[C]//27th International Symposium on Space Technology and Science. 2009: 1-5.
    [37]
    Gibbings A, Vasile M, Watson I, et al. Experimental analysis of laser ablated plumes for asteroid deflection and exploitation[J]. Acta Astronautica, 2013, 90(1): 85-97. doi: 10.1016/j.actaastro.2012.07.008
    [38]
    Zhang Qicheng, Walsh K J, Melis C, et al. Orbital simulations for directed energy deflection of near-earth asteroids[J]. Procedia Engineering, 2015, 103: 671-678. doi: 10.1016/j.proeng.2015.04.087
    [39]
    Thiry N, Vasile M. Recent advances in laser ablation modelling for asteroid deflection methods[C]//Proceedings of SPIE 9226, Nanophotonics and Macrophotonics for Space Environments VIII. 2014: 922608.
    [40]
    Vasile M, Nicolas T. LightTouch3: a demo mission to test laser ablation for asteroid manipulation and exploitation[C]//15th Reinventing Space Conference. Glasgow, UK, 2017.
    [41]
    Sloane J B, Sedwick R J. Direct force measurement of pulsed laser ablation of asteroid simulants[J]. Journal of Propulsion and Power, 2020, 36(4): 551-559. doi: 10.2514/1.B37566
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(2)

    Article views (3491) PDF downloads(292) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return