留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于JMCT软件的中子活化数值模拟程序的开发和检验

黄孟 朱剑钰 伍钧 张松柏 李瑞 李刚

黄孟, 朱剑钰, 伍钧, 等. 基于JMCT软件的中子活化数值模拟程序的开发和检验[J]. 强激光与粒子束, 2022, 34: 026016. doi: 10.11884/HPLPB202234.210356
引用本文: 黄孟, 朱剑钰, 伍钧, 等. 基于JMCT软件的中子活化数值模拟程序的开发和检验[J]. 强激光与粒子束, 2022, 34: 026016. doi: 10.11884/HPLPB202234.210356
Huang Meng, Zhu Jianyu, Wu Jun, et al. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34: 026016. doi: 10.11884/HPLPB202234.210356
Citation: Huang Meng, Zhu Jianyu, Wu Jun, et al. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34: 026016. doi: 10.11884/HPLPB202234.210356

基于JMCT软件的中子活化数值模拟程序的开发和检验

doi: 10.11884/HPLPB202234.210356
基金项目: 四川省科技厅项目(2021YFSF0058)
详细信息
    作者简介:

    黄 孟,hm.max@126.com

    通讯作者:

    朱剑钰,zhujyu@126.com

  • 中图分类号: O571.53

Development and test of neutron activation simulation program based on JMCT software

  • 摘要: 中子活化产物和辐射特征的数值模拟程序是研究材料活化效应的重要工具。在JMCT软件的基础上开发了具备材料中子活化效应模拟能力的数值模拟程序,并将其命名为“中子活化数值模拟程序”,旨在将其应用于军控核查、核安全等领域的研究中。对该程序在核弹头内部中子输运和活化计算的准确性进行了验证,发现该程序对核弹头内部中子输运和活化的计算精度优良。利用该程序研究了混凝土地面核素在裂变核材料的裂变中子辐照下的活化效应,计算结果进一步验证了中子活化数值模拟程序的功能。
  • 图  1  中子活化数值模拟程序的基本框架

    Figure  1.  Framework of neutron activation simulation program

    图  2  放射性核素半衰期数据库和放射性核素γ衰变数据库

    Figure  2.  Databases of half-lives and γ-decay of radionuclides

    图  3  中子活化数值模拟程序的核素数目计算的结果文件

    Figure  3.  Output file of radionuclide numbers of neutron activation simulation program

    图  4  核弹头模型

    Figure  4.  Nuclear warhead model

    图  5  从核弹头模型中出射的中子的能谱

    Figure  5.  Spectra of neutrons emitted from nuclear warhead models

    图  6  七种活化核素的数目与材料闲置时长的关系曲线

    Figure  6.  Relationship curves between numbers of 7 radionuclides and idle time

    图  7  不同中子辐照时长和材料闲置时长下进入高纯锗探测器的γ射线的能谱

    Figure  7.  Spectra of γ rays entering HPGe detector under different neutron irradiation time and idle time

    表  1  核弹头模型中各结构的尺寸、质量和成分参数

    Table  1.   Size, mass and ingredient parameters of structures in nuclear warhead model

    structureouter radius/cmmass/kgingredient parameters
    hole5.770.0vacuum
    fissile core7.012.0weapons-grade uranium (234U(1%), 235U(93.3%), 238U(5.5%), O(0.2%))
    reflector9.03.0natural beryllium
    tamper12.079.0Model 1: depleted uranium (235U(0.3%), 238U(99.7%)); Model 2: Natural tungsten
    explosive22.071.0explosive (atom number ratio is H:C:N:O=2:1:2:2)
    shell23.017.0natural aluminium
    下载: 导出CSV

    表  2  裂变材料的中子产额

    Table  2.   Neutron fields of fissile materials

    materialnuclideportionneutron yield/neutrons∙s−1
    (α, n) reactionspontaneous fission
    weapon-grade uranium234U1%505.546
    235U93.3%0.0120.299
    238U5.5%0.00113.57
    O0.2%00
    depleted uranium235U0.3%00.299
    238U99.7%013.57
    下载: 导出CSV

    表  3  从核弹头模型中出射的中子的数目

    Table  3.   Numbers of neutrons emitted from nuclear warhead model

    simulation softwarecontribution of fission core to neutron
    leakage from shell (neutrons/s)
    contribution of tamper to neutron
    leakage from shell (neutrons/s)
    total neutron leakage
    (neutrons/s)
    Model 1neutron activation
    simulation program
    18718736
    MCNP518720738
    Model 2neutron activation
    simulation program
    13013
    MCNP513013
    下载: 导出CSV

    表  4  核弹头模型中的放射性核素

    Table  4.   Radionuclides in nuclear warhead model

    radionuclidenuclear reactionhalf-lifedecay type
    16N16O(n,p)16N7.130 sβ, γ
    15O16O(n,2n)15O122.240 sβ+
    13N14N(n,2n)13N9.970 minβ+, β, γ
    11C12C(n,2n)11C20.48 minβ+, β, γ
    14C14N(n,p)14C5730 aβ
    下载: 导出CSV

    表  5  炸药中放射性核素的产生情况

    Table  5.   Production of radionuclides in explosive

    simulation
    software
    neutrons
    simulated
    equivalent
    measuring time
    number of radionuclide
    16N15O13N11C14C
    Model 1neutron activation
    simulation program
    1079.19×103 s470405.56×106
    GEANT41079.19×103 s610505.72×106
    Model 2neutron activation
    simulation program
    1075.23×105 s350205.93×106
    GEANT41075.23×105 s360906.07×106
    下载: 导出CSV

    表  6  混凝土地面模型的元素组分

    Table  6.   Element composition of concrete floor model

    elementatom proportion/%nuclide
    H13.31H/2H
    O73.716O/17O
    Na1.823Na
    Mg0.324Mg/25Mg/26Mg
    Al4.227Al
    Si0.328Si/29Si/30Si
    K1.239K/40K/41K
    Ca4.840Ca/42Ca/43Ca/44Ca/46Ca/48Ca
    Fe0.454Fe/56Fe/57Fe/58Fe
    下载: 导出CSV

    表  7  混凝土地面模型中核素活化产生的放射性核素的信息

    Table  7.   Information of activation products of concrete floor model

    radionuclidehalf-lifedecay typeyield/s−1activation reaction
    14C5715 aβ1.5917O(n,α)
    16N7.13 sβ0.61316O(n,p)
    20F11.0 sβ0.43223Na(n,α)
    23Ne37.2 sβ1.0523Na(n,p)
    24Na14.96 hβ14.823Na(n,γ), 24Mg(n,p), 27Al(n,α)
    27Mg9.45 minβ7.0527Al(n,p)
    28Al2.25 minβ15.627Al(n,γ), 28Si(n,p)
    36Cl3.01×105 aβ+,EC20.139K(n,α)
    37Ar35.0 dEC82.740Ca(n,α)
    39Ar268 aβ61.639K(n,p), 42Ca(n,α)
    41Ar1.82 hβ0.070041K(n,p)
    40K1.26×109 aβ+,EC,γ26139K(n,γ), 40Ca(n,p)
    42K12.36 hβ2.0441K(n,γ), 42Ca(n,p)
    41Ca1.02×105 aEC29.440Ca(n,γ)
    45Ca162.7 dβ1.1844Ca(n,γ)
    49Ca8.72 minβ0.13448Ca(n,γ)
    54Mn312 dEC,γ0.83554Fe(n,p)
    56Mn2.579 hβ0.14156Fe(n,p)
    55Fe2.73 aEC0.79854Fe(n,γ)
    下载: 导出CSV
  • [1] Glaser A, Barak B, Goldston R J. A zero-knowledge protocol for nuclear warhead verification[J]. Nature, 2014, 510(7506): 497-502. doi: 10.1038/nature13457
    [2] Hecla J J, Danagoulian A. Nuclear disarmament verification via resonant phenomena[J]. Nat Commun, 2018, 9: 1259. doi: 10.1038/s41467-018-03680-4
    [3] Kemp R S, Danagoulian A, Macdonald R R, et al. Physical cryptographic verification of nuclear warheads[J]. Proc Natl Acad Sci USA, 2016, 113(31): 8618-8623. doi: 10.1073/pnas.1603916113
    [4] Olinger C T, Stanbro W D, Johnston R G, et al. Technical challenges for dismantlement verification[R]. LA-UR-97-2812, 1997.
    [5] MacArthur D W, Hauck D K, Smith M. Confirmation of nuclear treaty limited items: pre-dismantlement vs. post-dismantlement[R]. LA-UR-13-23004, 2013.
    [6] Olinger C T, Frankle C M, Johnson M W, et al. Measurement approaches to support future warhead arms control transparency[R]. LA-UR-98-3115, 1998.
    [7] Hauck D K, MacArthur D W. Benefits of a “presence of fissile material” attribute for warhead confirmation in treaty verification[R]. LA-UR-13-25330, 2013.
    [8] Kütt M, Philippe S, Barak B, et al. Authenticating nuclear warheads with high confidence[C]//Proceedings of the 55th Annual INMM Meeting, 2014.
    [9] Voznyuk R, Charles M, Renlund A, et al. High explosive detection and destruction technology applications for warhead dismantlement transparency[R]. SAND2000-1533C, 2000.
    [10] 伍钧. 核弹头探测技术数值模拟研究[D]. 北京: 中国工程物理研究院北京研究生部, 2003

    Wu Jun. Numerical simulation study of nuclear warhead detection techniques[D]. Beijing: Graduate School of China Academy of Engineering Physics, 2003
    [11] Fetter S, Frolov V A, Miller M, et al. Detecting nuclear warheads[J]. Sci Glob Secur, 1990, 1(3/4): 225-253.
    [12] X-5 Monte Carlo Team. MCNP—A general Monte Carlo n-particle transport code, Version 5[R]. LA-UR-03-1987, 2003.
    [13] 刘运祚. 常用放射性核素衰变纲图[M]. 北京: 原子能出版社, 1982

    Liu Yunzuo. Common radionuclide decay scheme[M]. Beijing: Atomic Energy Press, 1982
    [14] Holden N E. Table of the isotopes[R]. BNL-71000-2003-BC, 2003.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  266
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-11-10
  • 录用日期:  2021-12-14
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回