最新录用
显示方式:
, 最新更新时间 , doi: 10.11884/HPLPB202638.250363
摘要:
近年来,闪光放疗、闪光摄影等新的应用领域对重复频率达到kHz以上的高重复频率直线感应加速器(LIA)提出了迫切的需求,而感应加速腔磁芯能否在重复频率脉冲间有效复位是限制高重复频率直线感应加速器能否实现的关键因素之一。通过高压实验和电路模拟,对非晶磁芯和纳米微晶两种磁芯的多种快速复位方法进行了研究和对比分析。在此基础上,结合自研的高重复频率脉冲感应加速单元,开展了加速腔磁芯脉冲间复位效果的实验测试。研究结果表明,纳米微晶磁芯更适用于高重复频率感应加速腔:利用电感隔离直流复位方法,现有装置水平能够满足10 kHz重复频率下纳米微晶磁芯的复位需求;利用低剩磁纳米微晶磁芯的自恢复能力,则可在100 kHz重复频率下实现加速腔磁芯的自动复位。
近年来,闪光放疗、闪光摄影等新的应用领域对重复频率达到kHz以上的高重复频率直线感应加速器(LIA)提出了迫切的需求,而感应加速腔磁芯能否在重复频率脉冲间有效复位是限制高重复频率直线感应加速器能否实现的关键因素之一。通过高压实验和电路模拟,对非晶磁芯和纳米微晶两种磁芯的多种快速复位方法进行了研究和对比分析。在此基础上,结合自研的高重复频率脉冲感应加速单元,开展了加速腔磁芯脉冲间复位效果的实验测试。研究结果表明,纳米微晶磁芯更适用于高重复频率感应加速腔:利用电感隔离直流复位方法,现有装置水平能够满足10 kHz重复频率下纳米微晶磁芯的复位需求;利用低剩磁纳米微晶磁芯的自恢复能力,则可在100 kHz重复频率下实现加速腔磁芯的自动复位。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250362
摘要:
随着高功率微波应用技术的快速发展,对脉冲驱动源的可靠性和适装性提出更加严苛的要求。介绍了一种轻小型化特斯拉(Tesla)变压器脉冲驱动源,提出基于高储能密度液体介质Midel7131和二倍宽脉冲形成线设计方法,突破了内置Tesla变压器的脉冲形成线轻小型化技术,优化短脉冲传输线电长度和阻抗匹配关系,解决了基于变压器油介质的单筒脉冲形成线和脉冲传输线长度长的技术难题。设计了Tesla变压器高位高真空注油方法,解决了油纸混合绝缘中气泡放电问题,提升了形成线功率水平和运行可靠性。研制的脉冲驱动源最高输出功率为20 GW、脉冲宽度50 ns、脉冲平顶幅值波动小于2%、最高重复频率50 Hz,连续运行1 min,累积工作约20万个脉冲,系统稳定可靠。该脉冲驱动源外廓尺寸(长×宽×高)为4 m×1.5 m×1.5 m,总重量约5 t;相比原20 GW Tesla型脉冲驱动源,轻小型化水平明显提升。
随着高功率微波应用技术的快速发展,对脉冲驱动源的可靠性和适装性提出更加严苛的要求。介绍了一种轻小型化特斯拉(Tesla)变压器脉冲驱动源,提出基于高储能密度液体介质Midel7131和二倍宽脉冲形成线设计方法,突破了内置Tesla变压器的脉冲形成线轻小型化技术,优化短脉冲传输线电长度和阻抗匹配关系,解决了基于变压器油介质的单筒脉冲形成线和脉冲传输线长度长的技术难题。设计了Tesla变压器高位高真空注油方法,解决了油纸混合绝缘中气泡放电问题,提升了形成线功率水平和运行可靠性。研制的脉冲驱动源最高输出功率为20 GW、脉冲宽度50 ns、脉冲平顶幅值波动小于2%、最高重复频率50 Hz,连续运行1 min,累积工作约20万个脉冲,系统稳定可靠。该脉冲驱动源外廓尺寸(长×宽×高)为4 m×1.5 m×1.5 m,总重量约5 t;相比原20 GW Tesla型脉冲驱动源,轻小型化水平明显提升。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250184
摘要:
双极性电磁脉冲发生器无法通过外置机械调节结构的方式对输出开关间隙进行调节。为解决其开关间隙调节难题,以绝缘气体为介质,气缸为执行器,间隙轨迹规划方法和单环PIDA控制器相结合为控制算法,提出了一种开关电极间隙气动调节方法,该气动调节方法可以更好地适应高压绝缘环境要求,替代人工调节和电动方式,实现开关间隙的实时精确控制。经仿真验证,在间隙传感器测量精度0.1 mm的精度下,开关间隙的调节误差小于0.5 mm,这对双极性等电磁脉冲模拟装置的工程化实现具有重要意义。
双极性电磁脉冲发生器无法通过外置机械调节结构的方式对输出开关间隙进行调节。为解决其开关间隙调节难题,以绝缘气体为介质,气缸为执行器,间隙轨迹规划方法和单环PIDA控制器相结合为控制算法,提出了一种开关电极间隙气动调节方法,该气动调节方法可以更好地适应高压绝缘环境要求,替代人工调节和电动方式,实现开关间隙的实时精确控制。经仿真验证,在间隙传感器测量精度0.1 mm的精度下,开关间隙的调节误差小于0.5 mm,这对双极性等电磁脉冲模拟装置的工程化实现具有重要意义。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250181
摘要:
纳秒脉冲下SF6中的沿面闪络涉及物理过程复杂,如何准确预测该环境下的绝缘介质沿面闪络电压是高压脉冲功率设备设计与绝缘可靠性评估的关键挑战。与传统工频或直流电压相比,纳秒脉冲极短的上升时间和高幅值导致空间电荷效应显著、放电发展机制迥异,使得基于经典理论的预测模型面临严峻挑战。近年来,随着计算机算力的飞速提升和人工智能算法的突破性进展,基于数据驱动的机器学习方法在解决复杂非线性绝缘问题中展现出了巨大潜力。针对纳秒脉冲下这一特定难题,选取了支持向量机、多层感知机、随机森林和极端梯度提升树等四种算法对15~500 mm多尺度距离范围内不同实验条件下的闪络电压数据进行了训练和预测,其预测结果的ROC 曲线下面积(AUC)值均在0.9以上,表现最优的是支持向量机算法。同时,为了验证预测模型的准确性,选取表现较为优异的支持向量机模型对另选取的100 mm距离数据进行了预测,AUC值达到0.99,这表明预测准确率高,可以认为模型具备较强的泛化性,从而验证了不同实验条件下基于数据驱动的SF6中闪络电压预测方法的可行性。
纳秒脉冲下SF6中的沿面闪络涉及物理过程复杂,如何准确预测该环境下的绝缘介质沿面闪络电压是高压脉冲功率设备设计与绝缘可靠性评估的关键挑战。与传统工频或直流电压相比,纳秒脉冲极短的上升时间和高幅值导致空间电荷效应显著、放电发展机制迥异,使得基于经典理论的预测模型面临严峻挑战。近年来,随着计算机算力的飞速提升和人工智能算法的突破性进展,基于数据驱动的机器学习方法在解决复杂非线性绝缘问题中展现出了巨大潜力。针对纳秒脉冲下这一特定难题,选取了支持向量机、多层感知机、随机森林和极端梯度提升树等四种算法对15~500 mm多尺度距离范围内不同实验条件下的闪络电压数据进行了训练和预测,其预测结果的ROC 曲线下面积(AUC)值均在0.9以上,表现最优的是支持向量机算法。同时,为了验证预测模型的准确性,选取表现较为优异的支持向量机模型对另选取的100 mm距离数据进行了预测,AUC值达到0.99,这表明预测准确率高,可以认为模型具备较强的泛化性,从而验证了不同实验条件下基于数据驱动的SF6中闪络电压预测方法的可行性。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250248
摘要:
脉冲阶梯调制(PSM)高压电源广泛应用于超导托卡马克装置的加热系统,采用模块化拓扑结构,通过多个直流电源模块输出叠加形成高压。每个电源模块输入过欠压保护功能,通过在输入电容两端安装电压传感器进行电压检测以实现,所需电压传感器数量庞大,增加了系统检测成本,提高了硬件检测电路的复杂性。介绍了PSM高压电源电路拓扑,详细分析了PSM高压电源的PWM模块循环控制策略,在此基础上提出了一种电源模块输入侧无电压传感器电压检测方法,在PSM高压电源输出侧采用单电压传感器检测电压信号,推导出各电源模块输入侧电压。最后,基于RT-LAB实时仿真平台搭建了仿真模型,实验结果验证了所提出SVM检测方法的有效性。
脉冲阶梯调制(PSM)高压电源广泛应用于超导托卡马克装置的加热系统,采用模块化拓扑结构,通过多个直流电源模块输出叠加形成高压。每个电源模块输入过欠压保护功能,通过在输入电容两端安装电压传感器进行电压检测以实现,所需电压传感器数量庞大,增加了系统检测成本,提高了硬件检测电路的复杂性。介绍了PSM高压电源电路拓扑,详细分析了PSM高压电源的PWM模块循环控制策略,在此基础上提出了一种电源模块输入侧无电压传感器电压检测方法,在PSM高压电源输出侧采用单电压传感器检测电压信号,推导出各电源模块输入侧电压。最后,基于RT-LAB实时仿真平台搭建了仿真模型,实验结果验证了所提出SVM检测方法的有效性。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250204
摘要:
毫秒(ms)充电的PFN-Marx型脉冲驱动源在轻量化、小型化实现方面具有较大潜力,为实现其长寿命稳定可靠运行,需解决的关键技术之一是提升气体触发开关重频稳定性。研制了一套基于电晕稳定开关工作原理的气体触发开关,以解决ms充电条件下开关工作电压分散性大、触发电极烧蚀过快的难题。围绕该开关开展了结构设计、静电场仿真、触发器研制、触发开关工作范围、时延及其抖动等研究,解决了ms充电条件下开关发生自击穿或触而未发概率高的问题。实验研究结果表明:所设计触发开关在工作气体SF6、气压0.6 MPa的条件下,开关最高工作电压达到90 kV,在开关工作电压84 kV、重频20 Hz、串内脉冲数500个、开关不换气的条件下,连续累计测试开关寿命10万次,期间仅出现1次自击穿,自击穿率<0.01‰,初步实现了电触发开关具有一定工作范围和寿命的设计目标。
毫秒(ms)充电的PFN-Marx型脉冲驱动源在轻量化、小型化实现方面具有较大潜力,为实现其长寿命稳定可靠运行,需解决的关键技术之一是提升气体触发开关重频稳定性。研制了一套基于电晕稳定开关工作原理的气体触发开关,以解决ms充电条件下开关工作电压分散性大、触发电极烧蚀过快的难题。围绕该开关开展了结构设计、静电场仿真、触发器研制、触发开关工作范围、时延及其抖动等研究,解决了ms充电条件下开关发生自击穿或触而未发概率高的问题。实验研究结果表明:所设计触发开关在工作气体SF6、气压0.6 MPa的条件下,开关最高工作电压达到90 kV,在开关工作电压84 kV、重频20 Hz、串内脉冲数500个、开关不换气的条件下,连续累计测试开关寿命10万次,期间仅出现1次自击穿,自击穿率<0.01‰,初步实现了电触发开关具有一定工作范围和寿命的设计目标。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250018
摘要:
提出一种结合多相时钟与延迟链插值的多通道FPGA-TDC结构,以降低工作频率、提升线性度并减少资源消耗,同时保持高分辨率。设计采用两级插值结构,利用多相时钟与延迟链构建细时间单元,从而减小延迟非线性积累并缩小编码器规模。系统在Xilinx ZYNQ-7035 平台实现,并在0~16000 ps范围内进行测试。实验结果表明,本文所设计的TDC系统分辨率优于4 ps,微分非线性在−1~+7 LSB之间,积分非线性在−2 LSB至+14 LSB之间。与传统结构相比,该方案在同频率下延迟链长度成倍缩短,在相同链长下频率更低。所提两级插值结构在提升分辨率和线性度的同时显著节省逻辑资源,具备良好的应用潜力。
提出一种结合多相时钟与延迟链插值的多通道FPGA-TDC结构,以降低工作频率、提升线性度并减少资源消耗,同时保持高分辨率。设计采用两级插值结构,利用多相时钟与延迟链构建细时间单元,从而减小延迟非线性积累并缩小编码器规模。系统在Xilinx ZYNQ-
, 最新更新时间 , doi: 10.11884/HPLPB202638.250155
摘要:
偏压电源是高压电子束焊机电源系统的重要部件之一,根据电子束焊机电源系统的技术要求,研制了一套输出直流电压−100 V~−2 kV可调,全电压范围内纹波小于等于0.1%,电压稳定性优于0.1%,输出电流大于3 mA的偏压电源,分别给出了该电源在电阻负载和高压电子枪负载下的实验结果。设计上采用吸收、保护等方法,解决了电子枪负载打火损坏偏压电源问题,成功将偏压电源串接在高压电源回路中,通过回采偏压电源回路中工作电流的大小来改变偏压电源输出电压(偏压杯电压),偏压杯电压根据束流大小而自适应调节,实现了工作束流实时快速跟随和精细调控。成功应用于−150 kV/33 mA高压电子束焊机,使高压电子束焊机的束流纹波达到±0.19%,束流稳定性优于±5 μA、束流可重现性达到±0.04%,满足了总体指标要求。
偏压电源是高压电子束焊机电源系统的重要部件之一,根据电子束焊机电源系统的技术要求,研制了一套输出直流电压−100 V~−2 kV可调,全电压范围内纹波小于等于0.1%,电压稳定性优于0.1%,输出电流大于3 mA的偏压电源,分别给出了该电源在电阻负载和高压电子枪负载下的实验结果。设计上采用吸收、保护等方法,解决了电子枪负载打火损坏偏压电源问题,成功将偏压电源串接在高压电源回路中,通过回采偏压电源回路中工作电流的大小来改变偏压电源输出电压(偏压杯电压),偏压杯电压根据束流大小而自适应调节,实现了工作束流实时快速跟随和精细调控。成功应用于−150 kV/33 mA高压电子束焊机,使高压电子束焊机的束流纹波达到±0.19%,束流稳定性优于±5 μA、束流可重现性达到±0.04%,满足了总体指标要求。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250283
摘要:
在隐身飞行器设计中,缝隙等弱散射源的影响日益凸显。当前研究虽广泛采用仿真与测试分析缝隙散射,但其模型通常不属于真实的弱散射源。为准确度量弱缝隙的雷达散射截面(RCS)性能,本文应用电场矢量叠加原理,采用对消技术将缝隙的散射效应从其低散射背景载体中分离出来。基于此方法,我们明确了缝隙尺寸与其RCS之间的变化关系。同时,本文所采用的多目标散射源累积快速预测方法,能够对单直缝、直缝阵列及弯折缝等目标的散射性能进行快速评估。经对比验证,该快速方法的结果与精确模型仿真具有一致性。此方法为飞机表面蒙皮搭接、设备开口等结构的设计与优化提供了有效工具。文末通过试验件的仿真与实测数据对比,证实了本方法在评估弱散射目标方面的有效性。
在隐身飞行器设计中,缝隙等弱散射源的影响日益凸显。当前研究虽广泛采用仿真与测试分析缝隙散射,但其模型通常不属于真实的弱散射源。为准确度量弱缝隙的雷达散射截面(RCS)性能,本文应用电场矢量叠加原理,采用对消技术将缝隙的散射效应从其低散射背景载体中分离出来。基于此方法,我们明确了缝隙尺寸与其RCS之间的变化关系。同时,本文所采用的多目标散射源累积快速预测方法,能够对单直缝、直缝阵列及弯折缝等目标的散射性能进行快速评估。经对比验证,该快速方法的结果与精确模型仿真具有一致性。此方法为飞机表面蒙皮搭接、设备开口等结构的设计与优化提供了有效工具。文末通过试验件的仿真与实测数据对比,证实了本方法在评估弱散射目标方面的有效性。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250252
摘要:
基于啁啾脉冲放大技术,采用棒状光子晶体光纤作为核心增益介质,成功搭建一套百瓦级的高功率飞秒光纤激光系统。在主放大器部分,通过反向泵浦与单棒双通结合的放大形式,实现泵浦功率-放大后信号光功率的转换效率超过60%,实现了高的转换效率。放大过程中有效避免了横向模式不稳定和非线性光谱畸变,输出光斑椭圆度为95%。采用双光栅结构对输出激光进行脉宽压缩,最终实现了中心波长1033 nm、重复频率1 MHz、单脉冲能量162 μJ、脉冲宽度233 fs的高功率激光输出,激光器系统的总泵浦光功率与压缩后信号光功率转换效率高达54%。该激光器的高重复频率、高平均功率和窄脉宽特性,为百瓦级高功率飞秒光纤激光器的设计提供了新的方案。
基于啁啾脉冲放大技术,采用棒状光子晶体光纤作为核心增益介质,成功搭建一套百瓦级的高功率飞秒光纤激光系统。在主放大器部分,通过反向泵浦与单棒双通结合的放大形式,实现泵浦功率-放大后信号光功率的转换效率超过60%,实现了高的转换效率。放大过程中有效避免了横向模式不稳定和非线性光谱畸变,输出光斑椭圆度为95%。采用双光栅结构对输出激光进行脉宽压缩,最终实现了中心波长
, 最新更新时间 , doi: 10.11884/HPLPB202638.250070
摘要:
提出了一种基于分数阶涡旋光束的纳米粒子三维操控方法。通过建立分数阶涡旋光束的矢量衍射模型,揭示了拓扑系数与光场相位奇异性之间的映射关系。数值模拟结果表明,分数阶涡旋光束的焦场可视为整数阶模式的相干叠加,且其权重分布呈现显著的非对称特性。此外,还建立了基于分数阶涡旋光束捕获纳米粒子的光力模型。研究表明,通过调节分数阶涡旋光束的拓扑系数,可以实现对球形纳米粒子的精确操控。粒子在横向平面上的捕获位置与拓扑系数之间呈线性依赖关系。与传统的整数阶光束相比,该方法通过连续调节拓扑系数,实现了横向捕获位置的精确连续调控。理论计算与Langevin动力学模拟的结果进一步验证了该技术在三维空间内能够实现纳米粒子的多自由度协同操控。
提出了一种基于分数阶涡旋光束的纳米粒子三维操控方法。通过建立分数阶涡旋光束的矢量衍射模型,揭示了拓扑系数与光场相位奇异性之间的映射关系。数值模拟结果表明,分数阶涡旋光束的焦场可视为整数阶模式的相干叠加,且其权重分布呈现显著的非对称特性。此外,还建立了基于分数阶涡旋光束捕获纳米粒子的光力模型。研究表明,通过调节分数阶涡旋光束的拓扑系数,可以实现对球形纳米粒子的精确操控。粒子在横向平面上的捕获位置与拓扑系数之间呈线性依赖关系。与传统的整数阶光束相比,该方法通过连续调节拓扑系数,实现了横向捕获位置的精确连续调控。理论计算与Langevin动力学模拟的结果进一步验证了该技术在三维空间内能够实现纳米粒子的多自由度协同操控。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250178
摘要:
为了实现拉曼激光装置的小型化并抑制激光诱导击穿现象,利用锥透镜将泵浦激光调制成贝塞尔光束以实现受激拉曼变频。实验结果表明,增益介质的气压,泵浦光的直径,锥透镜的底角均对光子转化效率产生影响。在3.5 MPa甲烷中,1064 nm波长、366 mJ脉冲能量的泵浦光能够产生128 mJ的1543 nm前向拉曼激光,光子转化效率达到50.7%,且有望在更高气压和更高泵浦能量下实现更高转化效率。遮挡锥透镜中心圆角尖端,仍可保留97 mJ的拉曼激光脉冲能量,此时光束质量β=2.19。实验验证了拉曼池可设计为长度0.4 m而不损坏窗口。综合多个实验结果可以推论,在不牺牲转化效率的前提下,拉曼池可以进一步缩短至0.3 m。通过轴向移动锥透镜在长拉曼池内的位置,可调节前后向斯托克斯光的输出比例。
为了实现拉曼激光装置的小型化并抑制激光诱导击穿现象,利用锥透镜将泵浦激光调制成贝塞尔光束以实现受激拉曼变频。实验结果表明,增益介质的气压,泵浦光的直径,锥透镜的底角均对光子转化效率产生影响。在3.5 MPa甲烷中,
, 最新更新时间 , doi: 10.11884/HPLPB202638.250171
摘要:
强激光在空间太阳能电站无线能量传输(WPT)过程中可能对其他航天器产生影响,特别是对航天器的太阳电池阵,可能诱发航天器太阳电池阵放电。掌握激光诱发航天器太阳电池阵放电特性,对支撑强激光无线能量传输技术发展有重要作用。开展激光能量与波长两个参量对激光诱发太阳能电池阵放电特性的影响研究。基于激光诱导等离子体理论和低地球轨道(LEO)等离子环境下的放电机理,分析了激光诱发太阳电池阵放电的机制,并基于该机制理论指定了激光诱发航天器太阳电池阵放电试验的试验参数。试验分析了532 nm波长不同能量激光诱发太阳电池阵放电的概率,并获取放电时间数据,建立时间概率分布曲线,通过二重泊松分布拟合,获得不同能量激光诱发太阳电池阵放电持续时间的概率函数;对比研究了相同能量下532 nm与266 nm两种波长激光诱发太阳电池阵放电的电流峰值以及持续时间概率函数。研究结果显示激光波长越短、能量越高,诱发太阳电池阵放电风险越高。
强激光在空间太阳能电站无线能量传输(WPT)过程中可能对其他航天器产生影响,特别是对航天器的太阳电池阵,可能诱发航天器太阳电池阵放电。掌握激光诱发航天器太阳电池阵放电特性,对支撑强激光无线能量传输技术发展有重要作用。开展激光能量与波长两个参量对激光诱发太阳能电池阵放电特性的影响研究。基于激光诱导等离子体理论和低地球轨道(LEO)等离子环境下的放电机理,分析了激光诱发太阳电池阵放电的机制,并基于该机制理论指定了激光诱发航天器太阳电池阵放电试验的试验参数。试验分析了532 nm波长不同能量激光诱发太阳电池阵放电的概率,并获取放电时间数据,建立时间概率分布曲线,通过二重泊松分布拟合,获得不同能量激光诱发太阳电池阵放电持续时间的概率函数;对比研究了相同能量下532 nm与266 nm两种波长激光诱发太阳电池阵放电的电流峰值以及持续时间概率函数。研究结果显示激光波长越短、能量越高,诱发太阳电池阵放电风险越高。
, 最新更新时间 , doi: 10.11884/HPLPB202537.250150
摘要:
高功率GaN基蓝光二极管激光器在工业加工、铜材料焊接、3D打印、水下激光通信等技术领域有着广泛的应用前景。蓝光二极管激光芯片COS单元器件具有热阻低和尺寸小的优点,但是该器件存在可靠性较低的问题,导致其在工业化应用中受到一定限制,因此对其性能退化因素进行深入研究。基于光学显微技术、扫描电子显微表征和能谱分析手段对经过长时老化考核后器件的性能退化因素进行分析研究。实验研究和分析表明,GaN基体材料缺陷、腔面多余物沉积和光化学腐蚀是导致蓝光二极管激光芯片性能退化的主因,同时良好的气密性封装可提高二极管激光芯片的可靠性。
高功率GaN基蓝光二极管激光器在工业加工、铜材料焊接、3D打印、水下激光通信等技术领域有着广泛的应用前景。蓝光二极管激光芯片COS单元器件具有热阻低和尺寸小的优点,但是该器件存在可靠性较低的问题,导致其在工业化应用中受到一定限制,因此对其性能退化因素进行深入研究。基于光学显微技术、扫描电子显微表征和能谱分析手段对经过长时老化考核后器件的性能退化因素进行分析研究。实验研究和分析表明,GaN基体材料缺陷、腔面多余物沉积和光化学腐蚀是导致蓝光二极管激光芯片性能退化的主因,同时良好的气密性封装可提高二极管激光芯片的可靠性。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250123
摘要:
旋磁非线性传输线因其独特的小型化结构、实时频率调谐能力以及宽谱微波输出特性,在小型固态化高功率微波源方向展现出重要应用价值。通过理论推导获得GNLTL等效电路中的孤子解析表达式,通过电路仿真方法,构建旋磁非线性传输线的等效电路模型,系统研究关键电路参数对输出特性的影响机制。研究发现:非线性电感的饱和电流和初始电感对电路的非线性特性具有决定性影响。当饱和电流和初始电感取值较小时,输出脉冲出现前沿不完全陡化,且脉冲前沿加载有振荡波形;此时,若饱和电流和初始电感增大,输出脉冲的前沿陡化程度得到提升,即饱和电流和初始电感与电路的非线性正相关。此外,等效电路的非线性增强会导致输出频率的降低。饱和电流、饱和电感、初始电感以及每级电容与输出微波频率负相关。该研究可以为旋磁非线性传输线的设计分析提供参考。
旋磁非线性传输线因其独特的小型化结构、实时频率调谐能力以及宽谱微波输出特性,在小型固态化高功率微波源方向展现出重要应用价值。通过理论推导获得GNLTL等效电路中的孤子解析表达式,通过电路仿真方法,构建旋磁非线性传输线的等效电路模型,系统研究关键电路参数对输出特性的影响机制。研究发现:非线性电感的饱和电流和初始电感对电路的非线性特性具有决定性影响。当饱和电流和初始电感取值较小时,输出脉冲出现前沿不完全陡化,且脉冲前沿加载有振荡波形;此时,若饱和电流和初始电感增大,输出脉冲的前沿陡化程度得到提升,即饱和电流和初始电感与电路的非线性正相关。此外,等效电路的非线性增强会导致输出频率的降低。饱和电流、饱和电感、初始电感以及每级电容与输出微波频率负相关。该研究可以为旋磁非线性传输线的设计分析提供参考。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250112
摘要:
本文通过理论建模与数值模拟相结合,系统探究了在低能超导质子直线加速器内,加速过程中聚焦参数动态演化对空间电荷主导型包络不稳定性的影响机制,创新性地揭示了低能段双周期聚焦结构与束晕产生的内在关联。基于Vlasov-Poisson方程二阶偶模展开,构建了理论模型,设计零流强周期相移(σ0)局部突破90°的多种演化方案,全面探究了不同聚焦方案下,局部突破90°对束流品质的影响,并用多粒子模拟软件对低能、归一化均方根发射度0.2~0.4 π·mm·mrad的质子束进行了多粒子模拟验证;针对双周期聚焦结构特征,设计了相应的聚焦结构与束流匹配方案,通过粒子-束核模型对比分析了准周期与双周期结构的束晕形成机制差异,定量分析了纵向包络对横向束晕的耦合作用。研究结果表明,当空间电荷效应较弱(对应于较高的调谐因子η,η=带电流周期相移σ/零流强周期相移σ0)时,σ0可突破90°而不导致束流品质恶化;反之,当空间电荷效应较强(低η值)时,σ0的突破会激发共振并导致束流发射度显著增长,且这一效应在双组合四极透镜聚焦结构中尤为显著。二维/三维模型均证实,即便每个聚焦单元的σ0<90°,双周期结构仍会引发束流包络的不稳定性。二维模型研究结果显示,相较于准周期结构,双周期结构更易产生束晕现象,其中2∶1共振仍是束晕形成的主要原因。采用三维模型进一步研究纵向因素的影响时发现,三维束团纵向尺寸的变化会显著改变束核电荷密度分布,这一现象成为束晕形成的新机制。此外,高阶共振也在很大程度上促进了束晕的形成。研究还揭示了小周期结构数(N)与共振概率呈负相关关系。
本文通过理论建模与数值模拟相结合,系统探究了在低能超导质子直线加速器内,加速过程中聚焦参数动态演化对空间电荷主导型包络不稳定性的影响机制,创新性地揭示了低能段双周期聚焦结构与束晕产生的内在关联。基于Vlasov-Poisson方程二阶偶模展开,构建了理论模型,设计零流强周期相移(σ0)局部突破90°的多种演化方案,全面探究了不同聚焦方案下,局部突破90°对束流品质的影响,并用多粒子模拟软件对低能、归一化均方根发射度0.2~0.4 π·mm·mrad的质子束进行了多粒子模拟验证;针对双周期聚焦结构特征,设计了相应的聚焦结构与束流匹配方案,通过粒子-束核模型对比分析了准周期与双周期结构的束晕形成机制差异,定量分析了纵向包络对横向束晕的耦合作用。研究结果表明,当空间电荷效应较弱(对应于较高的调谐因子η,η=带电流周期相移σ/零流强周期相移σ0)时,σ0可突破90°而不导致束流品质恶化;反之,当空间电荷效应较强(低η值)时,σ0的突破会激发共振并导致束流发射度显著增长,且这一效应在双组合四极透镜聚焦结构中尤为显著。二维/三维模型均证实,即便每个聚焦单元的σ0<90°,双周期结构仍会引发束流包络的不稳定性。二维模型研究结果显示,相较于准周期结构,双周期结构更易产生束晕现象,其中2∶1共振仍是束晕形成的主要原因。采用三维模型进一步研究纵向因素的影响时发现,三维束团纵向尺寸的变化会显著改变束核电荷密度分布,这一现象成为束晕形成的新机制。此外,高阶共振也在很大程度上促进了束晕的形成。研究还揭示了小周期结构数(N)与共振概率呈负相关关系。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250049
摘要:
以蒙特卡罗软件Geant4中的MAGNETOCOSMIC程序为基础,通过计算模拟不同地磁场模型和地理位置发射时的粒子损失过程,探讨了地球磁场对人工辐射带中粒子运动和俘获的影响规律。首先,模拟了10MeV电子在不同经度和L值( L是赤道面上的空间映射点距地心距离与地球半径的比值) 下的发射,分析了在中心偶极子、偏心偶极子和国际地磁参考场(IGRF)三种地磁模型下电子的运动轨迹、损失锥角和俘获条件。结果显示:中心偶极子模型中电子的漂移轨迹相对规则且对称,而偏心偶极子模型则出现了不对称性,而 IGRF 模型则因其更精细的参数和更高的精度,展现了更复杂、不规则且更接近实际的轨迹;损失锥角随L值的变化关系中,IGRF模型下损失锥角最大,电子更难被地磁场俘获。其次,探讨了电子发射经度对损失过程的影响,尤其是在南大西洋异常区(SAA区)的损失过程。结果表明,当电子运动到靠近SAA中心的位置时会更容易发生漂移损失。
以蒙特卡罗软件Geant4中的MAGNETOCOSMIC程序为基础,通过计算模拟不同地磁场模型和地理位置发射时的粒子损失过程,探讨了地球磁场对人工辐射带中粒子运动和俘获的影响规律。首先,模拟了10MeV电子在不同经度和L值( L是赤道面上的空间映射点距地心距离与地球半径的比值) 下的发射,分析了在中心偶极子、偏心偶极子和国际地磁参考场(IGRF)三种地磁模型下电子的运动轨迹、损失锥角和俘获条件。结果显示:中心偶极子模型中电子的漂移轨迹相对规则且对称,而偏心偶极子模型则出现了不对称性,而 IGRF 模型则因其更精细的参数和更高的精度,展现了更复杂、不规则且更接近实际的轨迹;损失锥角随L值的变化关系中,IGRF模型下损失锥角最大,电子更难被地磁场俘获。其次,探讨了电子发射经度对损失过程的影响,尤其是在南大西洋异常区(SAA区)的损失过程。结果表明,当电子运动到靠近SAA中心的位置时会更容易发生漂移损失。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250067
摘要:
中子转换靶是强流直线加速器中子源的重要组成部分,在强流粒子束(质子或氘离子等)的轰击下,中子转换靶的散热是当前制约中子产额提升的关键因素,具有强散热能力的高性能气体靶是其中的解决方案之一。针对传统气体靶散热能力不足的问题,通过对靶室结构的改进,设计了一种新型动态气体靶系统。开展了气体靶系统和靶室结构的概念设计,并利用Target软件计算了气体靶金属窗和气体体靶对入射离子的能量歧离效应,结果显示:因气体造成的能量歧离很小,金属窗是入射离子能量歧离的主要来源。通过耦合SRIM计算加热功率,实现了热源随气体密度的动态加载,模拟了不同流强和不同入口速度条件下靶室内气流流动规律,结果表明,随着流强增加,加热功率逐渐升高,加热区密度迅速下降,同时提高靶室入口速度能够增强散热能力,减小因束流加热引起的密度下降效应。最后对气体靶产生中子的整体性能进行了评估,计算了不同流强下的中子产额及其能谱分布,当流强为10 mA时,气体靶的中子产额可以达到5.2×1012 n/s。
中子转换靶是强流直线加速器中子源的重要组成部分,在强流粒子束(质子或氘离子等)的轰击下,中子转换靶的散热是当前制约中子产额提升的关键因素,具有强散热能力的高性能气体靶是其中的解决方案之一。针对传统气体靶散热能力不足的问题,通过对靶室结构的改进,设计了一种新型动态气体靶系统。开展了气体靶系统和靶室结构的概念设计,并利用Target软件计算了气体靶金属窗和气体体靶对入射离子的能量歧离效应,结果显示:因气体造成的能量歧离很小,金属窗是入射离子能量歧离的主要来源。通过耦合SRIM计算加热功率,实现了热源随气体密度的动态加载,模拟了不同流强和不同入口速度条件下靶室内气流流动规律,结果表明,随着流强增加,加热功率逐渐升高,加热区密度迅速下降,同时提高靶室入口速度能够增强散热能力,减小因束流加热引起的密度下降效应。最后对气体靶产生中子的整体性能进行了评估,计算了不同流强下的中子产额及其能谱分布,当流强为10 mA时,气体靶的中子产额可以达到5.2×1012 n/s。
, 最新更新时间 , doi: 10.11884/HPLPB202537.250038
摘要:
束团电荷量100 pC条件下,C波段光阴极微波电子枪出口的束流归一化发射度预计低于0.2 mm.mrad。为实现对极小束流发射度的准确测量,设计了一套基于单狭缝扫描法的发射度测量仪,并利用数值模拟对发射度仪的狭缝结构和子束团漂移距离等核心参数进行了优化。考虑动态误差的数值模拟表明:采用宽度5 μm、厚度1 mm的狭缝和0.11 m的子束团漂移距离时,95%发射度的测量偏差低于5%。
束团电荷量100 pC条件下,C波段光阴极微波电子枪出口的束流归一化发射度预计低于0.2 mm.mrad。为实现对极小束流发射度的准确测量,设计了一套基于单狭缝扫描法的发射度测量仪,并利用数值模拟对发射度仪的狭缝结构和子束团漂移距离等核心参数进行了优化。考虑动态误差的数值模拟表明:采用宽度5 μm、厚度1 mm的狭缝和0.11 m的子束团漂移距离时,95%发射度的测量偏差低于5%。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250257
摘要:
空间太阳电池阵作为航天器的重要能源组成部分,在未来对抗中极易受到以高功率微波为代表的外来强电磁脉冲侵袭。为研究空间太阳电池阵的高功率微波耦合效应,以典型太阳电池阵结构和布局作为参考,搭建了高功率微波辐照作用下的太阳电池阵样品三维模型,研究了不同激励源参数条件(频率、极化方向、入射角度等)下的太阳电池阵耦合效应规律。结果表明:在2~18 GHz频率范围内,垂直极化的S波段微波辐照最容易对太阳电池阵造成诱发放电损伤,电池串间隙三结合部感应场强远高于互连片位置间隙;在微波辐照作用下太阳电池样品会感应出极强的瞬态电场,垂直极化情况下,感应场主要集中分布在电池串间隙、汇流条附近、电池片边缘;电池三结合部感应电场稳定峰值随微波入射角度的增大而减小,随微波功率密度的增大而增大;微波上升下降沿对感应电场值无明显影响;太阳电池阵串间隙周围空间的电场由间隙中心向外侧逐渐减小。该研究将为空间太阳电池阵的电磁防护设计提供参考。
空间太阳电池阵作为航天器的重要能源组成部分,在未来对抗中极易受到以高功率微波为代表的外来强电磁脉冲侵袭。为研究空间太阳电池阵的高功率微波耦合效应,以典型太阳电池阵结构和布局作为参考,搭建了高功率微波辐照作用下的太阳电池阵样品三维模型,研究了不同激励源参数条件(频率、极化方向、入射角度等)下的太阳电池阵耦合效应规律。结果表明:在2~18 GHz频率范围内,垂直极化的S波段微波辐照最容易对太阳电池阵造成诱发放电损伤,电池串间隙三结合部感应场强远高于互连片位置间隙;在微波辐照作用下太阳电池样品会感应出极强的瞬态电场,垂直极化情况下,感应场主要集中分布在电池串间隙、汇流条附近、电池片边缘;电池三结合部感应电场稳定峰值随微波入射角度的增大而减小,随微波功率密度的增大而增大;微波上升下降沿对感应电场值无明显影响;太阳电池阵串间隙周围空间的电场由间隙中心向外侧逐渐减小。该研究将为空间太阳电池阵的电磁防护设计提供参考。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250256
摘要:
在高功率微波和脉冲压缩领域,相对于指数衰减的微波脉冲,平顶输出具有降低结构表面最大瞬态场以及增强系统稳定性等核心优势,因此具有重要的技术意义和应用价值。提出一种S波段基于行波储能的环形高功率微波脉冲压缩器,通过控制环形波导传输线的长度使输入微波通过定向耦合器完成线性叠加储能,通过输入信号倒相完成功率的倍增和微波信号的平稳输出。基于散射矩阵理论分析其储能过程及输入倒相之后的功率增益和平顶输出宽度,并用CST进行仿真验证。仿真结果显示,其功率增益达5.7倍以上,平顶宽度80 ns,且波形平缓,若采用金属壁表面击穿阈值300 kV/cm来估计功率容量,则脉冲压缩器的功率容量可以达到160 MW。与现有技术相比,该设计结构简单、体积紧凑、加工维护便捷,为高功率微波能量平稳输出以及两级脉冲压缩系统的研究提供新方案。
在高功率微波和脉冲压缩领域,相对于指数衰减的微波脉冲,平顶输出具有降低结构表面最大瞬态场以及增强系统稳定性等核心优势,因此具有重要的技术意义和应用价值。提出一种S波段基于行波储能的环形高功率微波脉冲压缩器,通过控制环形波导传输线的长度使输入微波通过定向耦合器完成线性叠加储能,通过输入信号倒相完成功率的倍增和微波信号的平稳输出。基于散射矩阵理论分析其储能过程及输入倒相之后的功率增益和平顶输出宽度,并用CST进行仿真验证。仿真结果显示,其功率增益达5.7倍以上,平顶宽度80 ns,且波形平缓,若采用金属壁表面击穿阈值300 kV/cm来估计功率容量,则脉冲压缩器的功率容量可以达到160 MW。与现有技术相比,该设计结构简单、体积紧凑、加工维护便捷,为高功率微波能量平稳输出以及两级脉冲压缩系统的研究提供新方案。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250182
摘要:
为了提高高功率微波源在低导引磁场下的效率,提出了一种低磁场高效率同轴双模相对论切伦科夫振荡器。该器件工作在同轴准TEM模式与同轴TM01模式下,利用双模工作机制,实现了低磁场下(<0.4 T)的高效率输出。在粒子模拟中,导引磁场0.35 T时,器件实现了功率3 GW的微波输出、束-波转换效率40%。同时,针对实验中遇到的射频击穿现象,通过增加慢波结构周期数量来提高功率容量,并通过仿真和实验进行验证。最终实验中在0.37 T磁场下,输出微波功率2.85 GW、脉宽57 ns,转换效率34%。在低磁场下获得的实验结果为高功率微波系统小型化的发展提供了强力支撑。
为了提高高功率微波源在低导引磁场下的效率,提出了一种低磁场高效率同轴双模相对论切伦科夫振荡器。该器件工作在同轴准TEM模式与同轴TM01模式下,利用双模工作机制,实现了低磁场下(<0.4 T)的高效率输出。在粒子模拟中,导引磁场0.35 T时,器件实现了功率3 GW的微波输出、束-波转换效率40%。同时,针对实验中遇到的射频击穿现象,通过增加慢波结构周期数量来提高功率容量,并通过仿真和实验进行验证。最终实验中在0.37 T磁场下,输出微波功率2.85 GW、脉宽57 ns,转换效率34%。在低磁场下获得的实验结果为高功率微波系统小型化的发展提供了强力支撑。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250176
摘要:
通过辐照实验和热测方法研究了一型GNSS兼容接收机天线高功率微波(HPM)前门通道效应。辐照实验表明,在HPM频率1.6 GHz、脉宽50 ns、到靶功率密度约35 W/cm2条件下,实验的6个天线样本中有4个完全损伤、2个降级。对该型GNSS天线射频通道的分析和测试表明,其包含三级放大电路:第一级由两个滤波器和两个低噪放(LNA)分别形成中心频率约1.25 GHz和约1.6 GHz两条射频通道,其后信号合路进入共用的第二和第三级LNA。研究结果表明:HPM脉冲频率(1.6 GHz)所在射频通道的第一级LNA被HPM脉冲降级或损伤,是导致该型GNSS天线样本出现降级和损伤的原因;另一通道的第一级LNA及共用的第二、第三级LNA未受明显影响。原位更换受损的第一级LNA后,GNSS天线功能恢复正常,这说明该型GNSS天线前门效应与HPM频率具有较强相关性。
通过辐照实验和热测方法研究了一型GNSS兼容接收机天线高功率微波(HPM)前门通道效应。辐照实验表明,在HPM频率1.6 GHz、脉宽50 ns、到靶功率密度约35 W/cm2条件下,实验的6个天线样本中有4个完全损伤、2个降级。对该型GNSS天线射频通道的分析和测试表明,其包含三级放大电路:第一级由两个滤波器和两个低噪放(LNA)分别形成中心频率约1.25 GHz和约1.6 GHz两条射频通道,其后信号合路进入共用的第二和第三级LNA。研究结果表明:HPM脉冲频率(1.6 GHz)所在射频通道的第一级LNA被HPM脉冲降级或损伤,是导致该型GNSS天线样本出现降级和损伤的原因;另一通道的第一级LNA及共用的第二、第三级LNA未受明显影响。原位更换受损的第一级LNA后,GNSS天线功能恢复正常,这说明该型GNSS天线前门效应与HPM频率具有较强相关性。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250209
摘要:
为了满足研制兆瓦级大功率回旋行波管对高压、大电流、低电子注速度零散磁控注入电子枪的迫切需求,本文针对性地给出了一支新型磁控注入单阳极电子枪的设计方案。该新型电子枪方案引入曲面阴极结构,以降低电子枪的速度零散,同时有效增大阴极发射带面积,降低阴极发射密度,从根本上提高电子枪的工作稳定性与寿命。PIC仿真的结果表明:在115 kV、43 A的工作条件下,该电子枪的横纵速度比为1.05,速度零散为1.63%,引导中心半径为3.41 mm,满足应用需求。
为了满足研制兆瓦级大功率回旋行波管对高压、大电流、低电子注速度零散磁控注入电子枪的迫切需求,本文针对性地给出了一支新型磁控注入单阳极电子枪的设计方案。该新型电子枪方案引入曲面阴极结构,以降低电子枪的速度零散,同时有效增大阴极发射带面积,降低阴极发射密度,从根本上提高电子枪的工作稳定性与寿命。PIC仿真的结果表明:在115 kV、43 A的工作条件下,该电子枪的横纵速度比为1.05,速度零散为1.63%,引导中心半径为3.41 mm,满足应用需求。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250174
摘要:
核素的准确识别是提高放射性监测水平的关键。为进一步提升放射性核素识别性能,研究了基于卷积神经网络(CNN)和循环神经网络(RNN)结合的核素识别方法。使用碘化钠能谱仪采集8种单一和混合放射性核素γ能谱数据,通过计算γ光子在不同能量下的概率密度,采用随机抽样的方法生成大量γ能谱训练数据,并对数据进行归一化处理,然后利用CNN提取输入能谱数据的特征向量,并将提取到的特征向量输入RNN进行训练,最后由激活函数输出核素分类结果。为验证CNN-RNN识别核素的准确性,与基于卷积神经网络(CNN)和长短时记忆神经网络(LSTM)核素识别方法进行比较分析,得出在测试集上LSTM能谱模型对单核素的识别准确率优于97.5%,混合核素的识别率优于92.31%,CNN和CNN-RNN能谱模型对单核素的识别准确率为100%,混合核素的识别率分别优于92.95%和97.44%。结果表明,CNN-RNN能谱模型在γ能谱放射性核素识别中表现更优,通过与仅用实测数据训练的神经网络模型相比,加入增强数据可提升模型的训练效率和泛化能力。
核素的准确识别是提高放射性监测水平的关键。为进一步提升放射性核素识别性能,研究了基于卷积神经网络(CNN)和循环神经网络(RNN)结合的核素识别方法。使用碘化钠能谱仪采集8种单一和混合放射性核素γ能谱数据,通过计算γ光子在不同能量下的概率密度,采用随机抽样的方法生成大量γ能谱训练数据,并对数据进行归一化处理,然后利用CNN提取输入能谱数据的特征向量,并将提取到的特征向量输入RNN进行训练,最后由激活函数输出核素分类结果。为验证CNN-RNN识别核素的准确性,与基于卷积神经网络(CNN)和长短时记忆神经网络(LSTM)核素识别方法进行比较分析,得出在测试集上LSTM能谱模型对单核素的识别准确率优于97.5%,混合核素的识别率优于92.31%,CNN和CNN-RNN能谱模型对单核素的识别准确率为100%,混合核素的识别率分别优于92.95%和97.44%。结果表明,CNN-RNN能谱模型在γ能谱放射性核素识别中表现更优,通过与仅用实测数据训练的神经网络模型相比,加入增强数据可提升模型的训练效率和泛化能力。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250238
摘要:
为精确模拟高温球床堆内数万计燃料颗粒的气固两相耦合传热过程,并克服传统CFD-DEM方法因网格粗大导致的精度不足及全解析方法计算成本过高的问题,提出了一种适用于精细流体网格的半解析函数模型。该模型通过引入高斯核函数,对颗粒周围物理属性进行平滑与加权平均,从而实现在亚网格尺度下对颗粒所受流体作用力的精确计算。沃罗单元体分析表明,无量纲扩散时间的最优取值为0.6。超过此值会导致核函数影响域过度扩展,致使空间分布过度平滑而难以捕捉球床局部特征。在HTR-10球床堆的耦合传热仿真中,采用该模型计算得到的温度场分布与经验模型高度吻合。结果表明,本模型能够准确捕获颗粒间的相间作用力,为高温气冷堆热工流体仿真提供了一个兼具精度与效率的解决方案。
为精确模拟高温球床堆内数万计燃料颗粒的气固两相耦合传热过程,并克服传统CFD-DEM方法因网格粗大导致的精度不足及全解析方法计算成本过高的问题,提出了一种适用于精细流体网格的半解析函数模型。该模型通过引入高斯核函数,对颗粒周围物理属性进行平滑与加权平均,从而实现在亚网格尺度下对颗粒所受流体作用力的精确计算。沃罗单元体分析表明,无量纲扩散时间的最优取值为0.6。超过此值会导致核函数影响域过度扩展,致使空间分布过度平滑而难以捕捉球床局部特征。在HTR-10球床堆的耦合传热仿真中,采用该模型计算得到的温度场分布与经验模型高度吻合。结果表明,本模型能够准确捕获颗粒间的相间作用力,为高温气冷堆热工流体仿真提供了一个兼具精度与效率的解决方案。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250243
摘要:
提出了一种基于不规则三角网的复杂地形蒙特卡罗粒子输运快速建模方法,用于解决高分辨率下对复杂地形场景进行自适应高效蒙特卡罗(MC)建模的技术问题。具体为:首先,读取高分辨率的栅格形式的地形高程数据,并根据地形起伏变化的程度对高程点进行二维小波变换,用以精准定位地形突变并获得重要高程点集;然后,采用Delaunay 三角剖分方法对离散点集构造不规则三角网,得到TIN结构的地形数据;最后,采用MCNP程序的“任意多面体”宏体定义方式建立各种几何平面,并通过布尔运算构建复杂几何实体,从而实现了在高分辨率复杂地形场景下的MC粒子输运快速自动建模。测试结果表明,本文给出的建模方法能够精确还原复杂地形对核辐射的影响,在压缩栅元数目且提升建模计算效率的同时,获得了高保真的模拟结果。本文的研究适用于面向任一大规模复杂地形场景的MC粒子输运建模,是复杂地形影响下强辐射场建模计算的新方法。
提出了一种基于不规则三角网的复杂地形蒙特卡罗粒子输运快速建模方法,用于解决高分辨率下对复杂地形场景进行自适应高效蒙特卡罗(MC)建模的技术问题。具体为:首先,读取高分辨率的栅格形式的地形高程数据,并根据地形起伏变化的程度对高程点进行二维小波变换,用以精准定位地形突变并获得重要高程点集;然后,采用Delaunay 三角剖分方法对离散点集构造不规则三角网,得到TIN结构的地形数据;最后,采用MCNP程序的“任意多面体”宏体定义方式建立各种几何平面,并通过布尔运算构建复杂几何实体,从而实现了在高分辨率复杂地形场景下的MC粒子输运快速自动建模。测试结果表明,本文给出的建模方法能够精确还原复杂地形对核辐射的影响,在压缩栅元数目且提升建模计算效率的同时,获得了高保真的模拟结果。本文的研究适用于面向任一大规模复杂地形场景的MC粒子输运建模,是复杂地形影响下强辐射场建模计算的新方法。
, 最新更新时间 , doi: 10.11884/HPLPB202638.250187
摘要:
针对SAR系统的前门耦合电磁敏感特性,通过等效注入试验方法,系统研究了单频连续波对机载SAR成像的影响规律及作用机理,并采用融合皮尔逊相关系数、结构相似度和峰值信噪比的SAR图像质量评价因子作为干扰效果评估指标。研究结果表明:当干扰频率落入接收机硬件通带(8.5~9.5 GHz)范围内,且干信比≥15 dB时干扰效应显著;干扰信号在射频前端虽未诱发显著非线性效应,但会导致模数转换(ADC)采样芯片中的内部金属氧化物半导体场效应晶体管(MOSFET)产生非线性响应,其产生的额外直流分量和谐波成分是造成SAR图像中出现特征性干扰条纹及质量下降的根本物理成因。
针对SAR系统的前门耦合电磁敏感特性,通过等效注入试验方法,系统研究了单频连续波对机载SAR成像的影响规律及作用机理,并采用融合皮尔逊相关系数、结构相似度和峰值信噪比的SAR图像质量评价因子作为干扰效果评估指标。研究结果表明:当干扰频率落入接收机硬件通带(8.5~9.5 GHz)范围内,且干信比≥15 dB时干扰效应显著;干扰信号在射频前端虽未诱发显著非线性效应,但会导致模数转换(ADC)采样芯片中的内部金属氧化物半导体场效应晶体管(MOSFET)产生非线性响应,其产生的额外直流分量和谐波成分是造成SAR图像中出现特征性干扰条纹及质量下降的根本物理成因。
, 最新更新时间 , doi: 10.11884/HPLPB202537.250019
摘要:
光纤激光相干合成技术通过精确控制各路光纤激光的相位,实现高功率的激光输出。然而,系统运行中存在多种影响因素,如相位控制精度、光强稳定性、通信链路可靠性以及环境干扰等,这些因素可能导致系统性能下降。针对大规模光纤激光相干合成相位控制中的异常检测问题,提出一种基于深度学习的多探测器串行共孔径相干合成检测新方法。首先,采集十路光纤激光相干合成数据,分析系统控制过程及其合束原理,归类系统中可能出现的异常情况,并仿真得到数据集。其次,设计一种结合轻量化高效多头注意力机制(EMA)的EMA-Transformer网络模型。在对比实验中,本算法相较于ResNet50,在验证集上的精度提升了约50%,在测试集上的精度提升了约2.20%。在算法的实际应用中,搭建八束光纤激光相干合成实验装置,使用TensorRT部署算法进行测试。实验结果表明,本算法推理耗时达2.153 ms,达到了相位控制异常检测的实时性要求。
光纤激光相干合成技术通过精确控制各路光纤激光的相位,实现高功率的激光输出。然而,系统运行中存在多种影响因素,如相位控制精度、光强稳定性、通信链路可靠性以及环境干扰等,这些因素可能导致系统性能下降。针对大规模光纤激光相干合成相位控制中的异常检测问题,提出一种基于深度学习的多探测器串行共孔径相干合成检测新方法。首先,采集十路光纤激光相干合成数据,分析系统控制过程及其合束原理,归类系统中可能出现的异常情况,并仿真得到数据集。其次,设计一种结合轻量化高效多头注意力机制(EMA)的EMA-Transformer网络模型。在对比实验中,本算法相较于ResNet50,在验证集上的精度提升了约50%,在测试集上的精度提升了约2.20%。在算法的实际应用中,搭建八束光纤激光相干合成实验装置,使用TensorRT部署算法进行测试。实验结果表明,本算法推理耗时达2.153 ms,达到了相位控制异常检测的实时性要求。

Email alert
RSS
