留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VHTRC的棱柱式高温气冷堆核设计程序验证

袁媛 张成龙 刘国明 堵树宏 霍小东 冯致远 杜夏楠

袁媛, 张成龙, 刘国明, 等. 基于VHTRC的棱柱式高温气冷堆核设计程序验证[J]. 强激光与粒子束, 2022, 34: 026017. doi: 10.11884/HPLPB202234.210362
引用本文: 袁媛, 张成龙, 刘国明, 等. 基于VHTRC的棱柱式高温气冷堆核设计程序验证[J]. 强激光与粒子束, 2022, 34: 026017. doi: 10.11884/HPLPB202234.210362
Yuan Yuan, Zhang Chenglong, Liu Guoming, et al. Validation of a nuclear code system for prismatic high temperature gas-cooled reactors based on the Very High Temperature Reactor Critical Assembly benchmark[J]. High Power Laser and Particle Beams, 2022, 34: 026017. doi: 10.11884/HPLPB202234.210362
Citation: Yuan Yuan, Zhang Chenglong, Liu Guoming, et al. Validation of a nuclear code system for prismatic high temperature gas-cooled reactors based on the Very High Temperature Reactor Critical Assembly benchmark[J]. High Power Laser and Particle Beams, 2022, 34: 026017. doi: 10.11884/HPLPB202234.210362

基于VHTRC的棱柱式高温气冷堆核设计程序验证

doi: 10.11884/HPLPB202234.210362
详细信息
    作者简介:

    袁 媛,yuanyuan@cnpe.cc

    通讯作者:

    刘国明,liugma@cnpe.cc

  • 中图分类号: TL329

Validation of a nuclear code system for prismatic high temperature gas-cooled reactors based on the Very High Temperature Reactor Critical Assembly benchmark

  • 摘要: 高温气冷堆是国际公认的固有安全性高的反应堆堆型。针对高温气冷堆包覆颗粒燃料引入的燃料组件的双重非均匀性以及棱柱式堆芯布置的非均匀性和强空间耦合效应,提出基于蒙特卡罗均匀化-确定论输运方法的RMC-SaraGR程序系统作为棱柱式高温气冷堆的核设计程序。基于日本棱柱式高温气冷堆临界实验装置VHTRC基准题,针对此套核设计程序系统开展了均匀化模型研究和初步验证。研究结果表明,基于蒙特卡罗均匀化方法,采用全堆模型、合适的能群结构和分区方式产生组件群常数,并经过超级等效均匀化方法进行等效均匀化修正,可以保证堆芯多群均匀计算具有较高的计算精度。
  • 图  1  VHTRC HP堆芯截面图

    Figure  1.  VHTRC HP core cross sections

    图  2  VHTRC HP堆芯调整后截面图

    Figure  2.  VHTRC HP core cross sections after modification

    图  3  SPH迭代计算中keff变化

    Figure  3.  keff in SPH iteration process

    表  1  调整截断石墨组件密度下的keff结果

    Table  1.   keff results of different density adjustment cases

    density adjustment factorkeffstandard deviation$\Delta {k}_{ {\rm{eff} }\text{} }$/10−5
    original1.008710.000260
    0.51.007650.00027−106
    0.61.008770.000246
    0.651.010310.00024160
    下载: 导出CSV

    表  2  不同能群结构下的keff

    Table  2.   keff of different energy group structure cases

    casekeffstandard deviation$\Delta {k}_{{\rm{eff}}}$/10−5
    CE1.009270.00011
    MG-4g1.028180.000091891
    MG-8g1.024760.000111549
    MG-16g1.023910.000111464
    MG-25g1.018440.00010917
    MG-40g1.017860.00011859
    MG-70g1.016610.00009734
    下载: 导出CSV

    表  3  不同分区下功率分布偏差

    Table  3.   Power discrepancy of different zoning cases

    No.relative error/%
    case 1case 2
    1 0.09 0.10
    2 −0.53 −0.54
    3 1.40 0.08
    4 0.09 0.47
    5 −0.20 −0.04
    6 0.52 0.38
    7 −0.34 −0.05
    8 −0.34 −0.12
    9 0.18 0.07
    10 −0.38 −0.18
    11 −0.48 −0.33
    12 0.20 0.12
    13 0.19 0.16
    下载: 导出CSV

    表  4  不同分区下的keff

    Table  4.   keff of different zoning cases

    keffstandard deviation
    case 1 1.00843 0.00010
    case 2 1.00951 0.00008
    下载: 导出CSV

    表  5  不同温度下keff

    Table  5.   keff of different temperature cases

    T/Kkeff
    benchmarkMVP-IIRMC-CESaraGR
    298.65 1.0115±0.0032 1.00706±0.00006 1.00927±0.00011 1.00981
    344.35 1.0046±0.0033 0.99998±0.00006 1.00263±0.00010 1.00219
    374.05 0.9994±0.0035 0.99527±0.00006 0.99778±0.00011 0.99713
    423.65 0.9906±0.0035 0.98700±0.00006 0.98925±0.00010 0.98823
    472.75 0.9820±0.0037 0.97893±0.00006 0.98140±0.00011 0.97957
    下载: 导出CSV

    表  6  截面插值计算结果

    Table  6.   Results with interpolation of cross sections

    T/Kkeff$\Delta {k}_{{\rm{eff}}}$/(10−5)
    RMC-CESaraGR-Interp
    298.65 1.00927±0.00011 1.00982 55
    344.35 1.00263±0.00010 1.00138 −125
    374.05 0.99778±0.00011 0.99642 −136
    400.00 0.99321±0.00011 0.99234 −87
    423.65 0.98925±0.00010 0.98787 −138
    472.75 0.98140±0.00011 0.97930 −210
    500.00 0.97677±0.00011 0.97491 −186
    下载: 导出CSV

    表  7  等温温度系数

    Table  7.   Isothermal reactivity coefficient

    case$ {\mathrm{\alpha }}_{\mathrm{T}} $/(10−5·K−1)
    benchmark−17.1
    MVP-II−16.4
    RMC-CE−16.2
    SaraGR−17.6
    SaraGR-Interp−17.7
    下载: 导出CSV
  • [1] 吴宗鑫, 张作义. 先进核能系统和高温气冷堆[M]. 北京: 清华大学出版社, 2004

    Wu Zongxin, Zhang Zuoyi. The advanced nuclear energy system and high temperature gas-cooled reactor. Beijing: Tsinghua University Press, 2004
    [2] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装载堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4):405-409. (Zhang Jingyu, Li Fu, Sun Yuliang. Neutronics calculation methods for the first core of the pebble bed high temperature gas cooled reactor[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(4): 405-409
    [3] Tsuyoshi Y, Yasunori K, Yuta E. Temperature effect on reactivity in VHTRC-1 core[R]. VHTRC-GCR-EXP-001, 2006.
    [4] Wang K, Li Z G, She D, et al. RMC – A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [5] 吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生[D]. 北京: 清华大学, 2018

    Wu Gaochen. Research on continuous energy Monte Carlo homogenization and group constant generation based on RMC[D]. Beijing: Tsinghua University, 2018
    [6] Yuan Y, Xing J, Huo X D, et al. Research on the on-the-fly homogenization method based on RMC code for criticality calculations[J]. Annals of Nuclear Energy, 2020, 135: 106985. doi: 10.1016/j.anucene.2019.106985
    [7] Liu S, She D, Liang J G, et al. Development of random geometry capability in RMC code for stochastic media analysis[J]. Annals of Nuclear Energy, 2015, 85: 903-908. doi: 10.1016/j.anucene.2015.07.008
    [8] 卢皓亮, 吴宏春, 曹良志, 等. 中子输运方程的三角形节块SN方法研究[J]. 核动力工程, 2006, 27(5):6-11. (Lu Haoliang, Wu Hongchun, Cao Liangzhi, et al. Nodal SN method for neutron transport equation in triangular geometry[J]. Nuclear Power Engineering, 2006, 27(5): 6-11 doi: 10.3969/j.issn.0258-0926.2006.05.002
    [9] Joel D R. CASMO-5: a fuel assembly burnup program user’s manual[R]. SSP-07/431 Rev 9, 2015.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  959
  • HTML全文浏览量:  410
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-10-09
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回