| [1] | Wang D Q, Yan B H, Chen J Y. The opportunities and challenges of micro heat piped cooled reactor system with high efficiency energy conversion units[J]. Annals of Nuclear Energy, 2020, 149: 107808. doi:  10.1016/j.anucene.2020.107808 | 
		
				| [2] | Yan B H, Wang C, Li L G. The technology of micro heat pipe cooled reactor: A review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi:  10.1016/j.anucene.2019.106948 | 
		
				| [3] | McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reactors[R]. LA-UR-15-28840, 2015. | 
		
				| [4] | Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report [R]. INL/EXT-16-40741, 2017. | 
		
				| [5] | Ma Y G, Chen E H, Yu H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi:  10.1016/j.anucene.2020.107755 | 
		
				| [6] | 马誉高, 刘旻昀, 余红星, 等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程, 2020, 41:191-196. (Ma Yugao, Liu Minyun, Yu Hongxing, et al. Neutronic/thermal-mechanical coupling in heat pipe cooled reactor[J]. Nuclear Power Engineering, 2020, 41: 191-196 | 
		
				| [7] | Ma Y G, Liu M Y, Xie B H, et al. Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods[J]. Annals of Nuclear Energy, 2021, 151: 107923. doi:  10.1016/j.anucene.2020.107923 | 
		
				| [8] | Zhang W W, Zhang D L, Wang C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. doi:  10.1016/j.anucene.2020.107576 | 
		
				| [9] | Sun H, Wang C L, Ma P, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118–127. | 
		
				| [10] | Khandaq M F, Harto A W, Agung A W. Conceptual core design study for Indonesian Space Reactor (ISR)[J]. Progress in Nuclear Energy, 2020, 118: 103109. doi:  10.1016/j.pnucene.2019.103109 | 
		
				| [11] | 周梦飞, 刘国明, 霍小东. 基于包覆燃料的气冷快堆堆芯核设计[J]. 现代应用物理, 2021, 12(1):96-74. (Zhou Mengfei, Liu Guoming, Huo Xiaodong. Core nuclear design for gas cooled fast reactor based on a novel type of fuel dispersion with coated fuel particles[J]. Modern Applied Physics, 2021, 12(1): 96-74 | 
		
				| [12] | Li W, Shirven S. Implications of SiC irradiation creep and annealing to UN-SiC fuel rod behavior[J]. Journal of Nuclear Materials, 2020, 542: 152479. doi:  10.1016/j.jnucmat.2020.152479 | 
		
				| [13] | Herrmann M, Meisel P, Lippmann W, et al. Joining technology—A challenge for the use of SiC components in HTRs[J]. Nuclear Engineering and Design, 2016, 306: 170-176. doi:  10.1016/j.nucengdes.2015.12.022 | 
		
				| [14] | Hernandez R, Todosow M, Brown N R. Micro heat pipe nuclear reactor concepts: Analysis of fuel cycle performance and environmental impacts[J]. Annals of Nuclear Energy, 2019, 126: 419-426. | 
		
				| [15] | Wang K, Li Z G, She D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi:  10.1016/j.anucene.2014.08.048 | 
		
				| [16] | Ma Y G, Liu S C, Luo Z, et al. RMC/CTF multiphysics solutions to VERA core physics benchmark problem 9[J]. Annals of Nuclear Energy, 2019, 133: 837-852. doi:  10.1016/j.anucene.2019.07.033 | 
		
				| [17] | Chadwick M B, Obloˇzinsk´y P, Herman M, et al. ENDF/B-VII. 0: Next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107: 2931-3060. doi:  10.1016/j.nds.2006.11.001 | 
		
				| [18] | Zhang A, Zou C Y, Wu J H, et al. Radiotoxicity of minor actinides in thermal, epithermal and fast TMSRs with very high burnup[J]. Annals of Nuclear Energy, 2020, 137: 107162. doi:  10.1016/j.anucene.2019.107162 | 
		
				| [19] | Liu B, Wang K, Tu J, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 2014, 64: 86-92. doi:  10.1016/j.anucene.2013.09.042 |