Raman characteristic analysis of oxidation of fuel pellets for intact and leaked pressurized water reactors fuel rods with different burnup
-
摘要: 为研究压水堆不同燃耗完整和破损燃料棒燃料芯块氧化过程和物相变化,采用拉曼光谱分析技术对燃耗为14 GW·d·t−1和45 GW·d·t−1的完整燃料棒及燃耗为14 GW·d·t−1和41 GW·d·t−1的破损燃料棒燃料芯块的氧化特征进行了分析。结果表明:14 GW·d·t−1和45 GW·d·t−1的完整燃料棒燃料芯块由UO2、U4O9和U3O8组成,相比于燃料芯块的内部区域,芯块边缘显示出更强的氧化性;14 GW·d·t−1和41 GW·d·t−1破损燃料棒燃料芯块发生了重结构,形成柱状晶粒,主要物相为UO2和U3O8。燃耗的加深和燃料棒的破损均促进了燃料芯块的氧化过程,但并不会改变燃料芯块的主要相结构。Abstract: To study the oxidation and phase structure of fuel pellets for both intact and leak pressurized water reactors fuel rods with different burnup, Raman spectroscopy was used to analyze the intact fuel rods with 14 GW·d·t−1 and 41 GW·d·t−1 burnup as well as the leak fuel rods with 14 GW·d·t−1 and 41 GW·d·t−1 burnup. Evaluation of the reactivity and structural changes of the fuels based on different laser powers are provided locally. The results show that the increase in laser power would not cause oxidation of UO2. The intact fuel rod UO2 pellets with 14 GW·d·t−1 and 45 GW·d·t−1 burnup consist of UO2, U4O9 and U3O8, and the oxidation of fuel pellet in peripheral zone is higher than that of the internal area. The leak fuel rod UO2 pellets with 14 GW·d·t−1 and 41 GW·d·t−1 burnup have undergone restructuring and formed columnar grains, which consist of UO2 and U3O8. The increase of burnup and leakage of fuel rods can promote the oxidation of UO2 pellets, but the main phase structure of the fuel pellets will not change.
-
Key words:
- pressurized water reactors /
- burnup /
- leaked fuel rod /
- Raman spectrum
-
表 1 不同燃耗完整和破损燃料棒信息
Table 1. Information of complete and leaked fuel rods with different burnup
sample No. status burnup/(GW·d·t−1) D05 intact 14 D13 intact 45 E05 leaked 14 J05 leaked 41 表 2 不同UO2氧化物类型Raman谱峰位移
Table 2. Raman peak shift of different UO2 oxide
type of oxide Raman shift/cm−1 UO2 445、575、1150 U4O9 160、630 U3O8 235、812 -
[1] 唐纳德·奥兰德. 核反应堆燃料元件基本问题[M]. 李恒德, 潘金生, 柳百新, 等, 译. 北京: 原子能出版社, 1983: 242-243Olander D R. Fundamental aspects of nuclear reactor fuel elements[M]. Li Hengde, Pan Jinsheng, Liu Baixin, et al, trans. Beijing: Atomic Energy Press, 1983: 242-243 [2] Skomurski F N, Wang J W, Ewing R C, et al. Charge distribution and oxygen diffusion in hyperstoichiometric uranium dioxide UO2+ x ( x ≤ 0.25)[J]. Journal of Nuclear Materials, 2013, 434(1/3): 422-433. [3] 周邦新. 核反应堆材料(上册)[M]. 上海: 上海交通大学出版社, 2021: 55Zhou Bangxin. Nuclear reactor materials (Book 1)[M]. Shanghai Jiao Tong University Press, 2021: 55 [4] Jegou C, Gennisson M, Peuget S, et al. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure[J]. Journal of Nuclear Materials, 2015, 458: 343-349. doi: 10.1016/j.jnucmat.2014.12.072 [5] Elorrieta J M, Bonales L J, Naji M, et al. Laser-induced oxidation of UO2: a Raman study[J]. Journal of Raman Spectroscopy, 2018, 49(5): 878-884. doi: 10.1002/jrs.5347 [6] Mohun R, Desgranges L, Jégou C, et al. Quantification of irradiation-induced defects in UO2 using Raman and positron annihilation spectroscopies[J]. Acta Materialia, 2019, 164: 512-519. doi: 10.1016/j.actamat.2018.10.044 [7] Desgranges L, Guimbretière G, Simon P, et al. Annealing of the defects observed by Raman spectroscopy in UO2 irradiated by 25 MeV He2+ ions[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 327: 74-77. [8] Desgranges L, Canizares A, Simon P. Annealing of the Raman defect peaks in He-implanted UO2[J]. Journal of Nuclear Materials, 2022, 559: 153405. doi: 10.1016/j.jnucmat.2021.153405 [9] 王华才, 程焕林, 宋武林, 等. 压水堆完整和破损燃料棒燃料包壳化学相互作用层拉曼特征分析[J]. 原子能科学技术, 2023, 57(3):619-629Wang Huacai, Cheng Huanlin, Song Wulin, et al. Raman characteristics analysis of fuel-cladding chemical interaction layer for intact and leak PWR fuel rods[J]. Atomic Energy Science and Technology, 2023, 57(3): 619-629 [10] Ciszak C, Mermoux M, Miro S, et al. Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod[J]. Journal of Nuclear Materials, 2017, 495: 392-404. doi: 10.1016/j.jnucmat.2017.08.038 [11] Jégou C, Caraballo R, De Bonfils J, et al. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: solution chemistry and surface characterization by Raman spectroscopy[J]. Journal of Nuclear Materials, 2010, 399(1): 68-80. doi: 10.1016/j.jnucmat.2010.01.004 [12] Jégou C, Caraballo R, Peuget S, et al. Raman spectroscopy characterization of actinide oxides (U1− y Pu y )O2: resistance to oxidation by the laser beam and examination of defects[J]. Journal of Nuclear Materials, 2010, 405(3): 235-243. doi: 10.1016/j.jnucmat.2010.08.005 [13] Manara D, Renker B. Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide[J]. Journal of Nuclear Materials, 2003, 321(2/3): 233-237. [14] 唐纳德·奥兰德. 核反应堆燃料元件基本问题[M]. 李恒德, 潘金生, 柳百新, 等, 译. 北京: 原子能出版社, 1983: 245Olander D R. Fundamental aspects of nuclear reactor fuel elements[M]. Li Hengde, Pan Jinsheng, Liu Baixin, et al, trans. Beijing: Atomic Energy Press, 1983: 245 [15] Palacios M L, Taylor S H. Characterization of uranium oxides using in situ micro-Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(9): 1372-1378. doi: 10.1366/0003702001951057