Remanent magnetic energy recovery method for air-core pulse alternator
-
摘要: 为了降低空心脉冲发电机的能量损耗与励磁绕组发热,提出了一种具有剩余磁能回收功能的脉冲发电机励磁电路。通过在电容支路设置调节电感,使放电完成后的电容电压反向,迫使晶闸管与二极管关断,以切换电流流通路径来实现剩余励磁能量到电容器中的转移。该电路使用晶闸管作为主开关,电流关断能力强的特点使其在大功率脉冲发电机的应用中具有一定优势。对提出的励磁能量回收电路的工作过程进行了介绍,仿真分析了剩余能量回收对励磁绕组能量损耗和脉冲发电机发热的影响,并对该电路拓扑的工作原理进行了实验验证。结果表明:该电路可以迅速回收励磁绕组中的剩余能量,缩短励磁电流续流时间,减少励磁损耗与能量损耗。仿真与实验结果反映的规律与电路原理一致,表明了该电路方法的可行性。Abstract: To reduce the energy loss of the air-core pulse alternator and the heating of the field winding, a field circuit topology with the function of recovering residual magnetic energy is proposed. By setting the adjustable inductance in the capacitor branch, the capacitor after the discharge has a reverse voltage, forcing the thyristor and the diode to turn off, and switching the current flow path to realize the transfer of the remaining excitation energy to the capacitor. The circuit uses the thyristor as the main switch, and its high current turn-off capability gives it an advantage in the application of high-power pulse alternator. The working process of the proposed excitation energy recovery circuit is introduced, the influence of residual energy recovery on the energy loss and heat generation of the field winding is simulated and analyzed, and the working principle of the circuit topology is verified experimentally. The results show that the circuit can quickly recover the residual energy in the field winding, shorten the freewheeling time of the excitation current, and reduce the excitation loss and energy loss. The law reflected by the simulation and experimental results is consistent with the circuit principle, which shows the validity of the circuit method.
-
Key words:
- pulse alternator /
- energy recovery /
- experimental research /
- pulse power supply /
- circuit topology
-
表 1 脉冲发电机仿真参数
Table 1. Simulation parameters of pulse alternator
number of
pole pairsnumber of
phasesrotor speed/
(r·min−1)rotor outer
diameter/mmstator outer
diameter/mmmoment of
inertia/(kg·m2)field winding
inductance/mHfield winding
resistance/mΩcapacitance of
capacitor/mFinitial excitation
voltage/V2 4 12000 540 760 30 4.2 90 3 1000 表 2 电路性能指标
Table 2. Circuit performance indices
circuit mode freewheeling time/ms winding heat/MJ winding temperature/℃ traditional circuit >20 >0.16 38.6 energy recovery circuit 6 0.11 34.9 表 3 实验电路参数
Table 3. Parameters of experimental circuit
capacitance of
capacitor/µFvoltage of
capacitor/Vinductance of regulating
winding/µHresistance of regulating
winding/mΩinductance of field
winding/mHresistance of field
winding/mΩ100 400 180 20 1.5 320 -
[1] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014 [2] 陶雪峰. 空心补偿脉冲发电机励磁与放电控制方法研究[D]. 长沙: 国防科技大学, 2017Tao Xuefeng. Research on the excitation and discharge control method of air-core compensated pulsed alternator[D]. Changsha: Graduate School of National University of Defense Technology, 2017 [3] 叶才勇, 于克训, 刘晓旭, 等. 补偿脉冲发电机电流脉冲成形的分析[J]. 高电压技术, 2008, 34(2):373-376Ye Caiyong, Yu Kexun, Liu Xiaoxu, et al. Investigation on the current pulse formation of compulsators[J]. High Voltage Engineering, 2008, 34(2): 373-376 [4] 陶雪峰, 刘昆. 空心补偿脉冲发电机设计与仿真[J]. 电工技术学报, 2018, 33(9):1931-1937Tao Xuefeng, Liu Kun. Design and simulation of an air-core compulsator[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1931-1937 [5] 陶雪峰, 刘昆. 补偿脉冲发电机放电波形优化方法[J]. 强激光与粒子束, 2018, 30:095001 doi: 10.11884/HPLPB201830.170325Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30: 095001 doi: 10.11884/HPLPB201830.170325 [6] Ye Caiyong, Yu Kexun, Lou Zhenxiu, et al. Investigation of self-excitation and discharge processes in an air-core pulsed alternator[J]. IEEE Transactions on Magnetics, 2010, 46(1): 150-154. doi: 10.1109/TMAG.2009.2030182 [7] Yu Kexun, Duan Huijie, Xie Xianfei. The electromagnetic and thermal analysis of an air-core pulsed alternator driving the railgun[C]//Proceedings of the 22nd International Conference on Electrical Machines and Systems. 2019. [8] Yu Kexun, Zhu Hanting, Xie Xianfei, et al. Loss analysis of air-core pulsed alternator driving an ideal electromagnetic railgun[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1589-1599. doi: 10.1109/TTE.2021.3051630 [9] 吴伏家, 东潘龙. 20MJ补偿脉冲发电机的设计与仿真[J]. 现代电子技术, 2014, 37(2):149-152 doi: 10.3969/j.issn.1004-373X.2014.02.041Wu Fujia, Dong Panlong. Design and simulation of 20 MJ compulsator[J]. Modern Electronics Technique, 2014, 37(2): 149-152 doi: 10.3969/j.issn.1004-373X.2014.02.041 [10] 张丰伟. 空芯脉冲发电机电源系统分析与控制研究[D]. 武汉: 华中科技大学, 2017Zhang Fengwei. The analysis and control of a pulsed power supply system based on an air-core alternator[D]. Wuhan: Huazhong University of Science and Technology, 2017 [11] 赵伟铎, 崔淑梅, 刘庆, 等. 空心补偿脉冲发电机温度场计算与分析[J]. 中国电机工程学报, 2011, 31(27):95-101 doi: 10.13334/j.0258-8013.pcsee.2011.27.013Zhao Weiduo, Cui Shumei, Liu Qing, et al. Thermal field calculation and analysis of an air-core compulsator[J]. Proceedings of the CSEE, 2011, 31(27): 95-101 doi: 10.13334/j.0258-8013.pcsee.2011.27.013 [12] Cui Shumei, Zhao Weiduo, Wu Shaopeng. Research on the thermal field and active water cooling system design of an air-core compulsator[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 257-262. doi: 10.1109/TPS.2010.2056938 [13] 李海涛, 刘剑, 赵博, 等. 一种可回收剩余励磁能量的他励空心脉冲发电机励磁电路: 113315427A[P]. 2021-08-27Li Haitao, Liu Jian, Zhao Bo, et al. A separately excited air-core pulse alternator excitation circuit capable of recovering residual excitation energy: 113315427A[P]. 2021-08-27 [14] 孙鹞鸿, 李文超, 付荣耀, 等. 一种用于他励脉冲发电机励磁能量回收的并励串收式拓扑结构: CN115085348A[P]. 2022-09-20Xun Yaohong, Li Wenchao, Fu Rongyao, et al. A shunt-excited series-received topology for the recovery of excitation energy of separately excited pulse generators: CN115085348A[P]. 2022-09-20 [15] Li Xiyuan, Song Liwei, Cui Shumei. Energy reclaim control of an air-core pulsed alternator[C]//Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. 2015. [16] Li Xiyuan, Cui Shumei, Song Liwei. Impact factors for energy reclamation control of an air-core pulsed alternator[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 0606805. [17] Ding Jianmin, Xie Xianfei, Yu Kenxun. Energy recovery of air-core pulsed alternators after discharge process[C]//Proceedings of 2021 IEEE 4th International Electrical and Energy Conference. 2021.