Recent progress of temporal coherent combination of chirped pulses in fiber lasers
-
摘要:
脉冲时域相干合成技术主要通过对功率放大后的高重频脉冲序列进行时序合成,从而降低激光的重复频率,有效地提升输出脉冲的峰值功率与能量,避免放大过程中高峰值功率引起的非线性效应。该技术与空域相干合成相结合,能够突破单纤激光的性能极限,实现高能量、高平均功率和高峰值功率的超短脉冲激光输出,具有广阔的应用前景。介绍了超短脉冲光纤激光时域相干合成的基本原理和关键技术,综述了时域相干合成系统的发展历程及其关键技术的研究现状,重点介绍了近年来脉冲分割放大与脉冲相干堆积技术的研究进展,并对时域相干合成的不同技术路线进行了分析与比较,最后对其未来的发展方向进行了梳理,为相关领域的研究提供参考。
Abstract:Temporal coherent combination further extends the pulse duration by assembling many pulses in a train passed through the amplifier into one output pulse, which can improve the peak power and pulse energy effectively and avoid nonlinear effects excited by the high peak power in the amplification. Spatial and temporal pulse combination can overcome limitations in single fiber laser, potentially leading to higher pulse energy, average power and peak power of ultrafast pulses currently only available from bulk amplifiers with low repetition rates. In this paper, the principles and key technologies of temporal coherent combination of ultrafast pulses in fiber lasers are introduced. The current status of temporal coherent combination and their technologies are reviewed. Recent progress of Divided Pulse Amplification (DPA) and Coherent Pulse Stacking (CPS) is emphasized. Different technical ways are compared and analyzed. Several future perspectives are pointed out. The paper can be a reference for research on temporal coherent combination of chirped pulses.
-
Key words:
- fiber laser /
- ultra-short pulse /
- temporal coherent combination /
- chirped pulse
-
图 21 基于4+4 GTI腔的脉冲相干堆积参数容差的理论模拟。脉冲对比度随腔相位、脉冲相位以及脉冲强度扰动的增大而下降[70]
Figure 21. Simulations illustrating the tolerances of the coherent pulse stacking parameters for 4+4 GTIs. Achievable pre-pulse contrast degrades in the presence of cavity phase errors, pulse phase errors, or pulse intensity errors[70]
表 1 超短脉冲DPA代表性研究结果
Table 1. Representative results of DPA of ultra-short pulsed lasers
year institution technical solution results 2017 Friedrich-Schiller-Universität,
Jena, GermanyEDPA, free space delay lines N=4, tp=190 ps, fRR=135 kHz, J=3.4 μJ, η=82.7%;
N=8, tp=190 ps, fRR=1075 kHz, η=76.8%[47]2019 Friedrich-Schiller-Universität,
Jena, GermanyEDPA+active CBC,
free space delay linesN×M=8×12, tp=235 fs, Pave=674 W, fRR=25 kHz, J= 23 mJ,
ηcomb = 71%, ηtemp=85%, ηsys=56%[65]2020 Peking University, China EDPA, free space delay lines N=128, fRR=200 kHz, η=35%[59] 2023 Friedrich-Schiller-Universität,
Jena, GermanyEDPA+active CBC,
free space delay linesN×M=8×16, tp=158 fs, Pave=703 W, fRR=20 kHz, J= 32 mJ,
ηcomb = 86%, ηtemp=90%,ηsys=77%[66]表 2 超短脉冲CPS代表性研究结果
Table 2. Representative results of CPS of ultra-short pulsed lasers
year institution technical solution results 2015 University of Michigan, USA Gires-Tournois interferometers N=5, tp=700 fs, fRR=10 kHz, J=μJ level, η= 97.4%[48] 2016 University of Michigan, USA 4+1 Gires-Tournois interferometers N=27, tp=330 fs, η=50%[62] 2017 University of Michigan, USA 4+4 Gires-Tournois interferometers N=81, tp=300 fs, fRR=1 kHz, J=multi-mJ, η=35%[63] 2018 Tsinghua University 2+1 Gires-Tournois interferometers N=15, tp=10 ps, fRR=98 kHz, η= 76%[69] 2021 University of Michigan, USA 4+4 Gires-Tournois interferometers N=81, tp=1 ns, J=4μJ, η=70.5%[70] -
[1] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260. doi: 10.1364/OE.19.000255 [2] Wan Peng, Yang L M, Liu Jian. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854 [3] Délen X, Zaouter Y, Martial I, et al. Yb: YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111. doi: 10.1364/OL.38.000109 [4] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874. doi: 10.1038/nphoton.2013.280 [5] Zhao Wei, Hu Xiaohong, Wang Yishan. Femtosecond-pulse fiber based amplification techniques and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 310513. [6] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. [7] Liu Yicai, Wu Jingfeng, Wen Xiaoxiao, et al. >100 W GHz femtosecond burst mode all-fiber laser system at 1.0 μm[J]. Optics Express, 2020, 28(9): 13414-13422. doi: 10.1364/OE.391515 [8] Cao Xue, Li Qianglong, Li Feng, et al. Femtosecond Yb-doped tapered fiber pulse amplifiers with peak power of over hundred megawatts[J]. Optics Express, 2023, 31(4): 5507-5518. doi: 10.1364/OE.480637 [9] Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862 [10] Li Feng, Zhao Wei, Wang Yishan, et al. Large dispersion-managed broadband high-energy fiber femtosecond laser system with sub 300 fs pulses and high beam quality output[J]. Optics & Laser Technology, 2023, 157: 108653. [11] Zhang Yao, Wang Jingshang, Teng Hao, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066 [12] Yang Ruoao, Zhao Minghe, Jin Xingang, et al. Attosecond timing jitter from high repetition rate femtosecond “solid-state fiber lasers”[J]. Optica, 2022, 9(8): 874-877. doi: 10.1364/OPTICA.457835 [13] Schimpf D N, SeiseE, EidamT, et al. Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping[J]. Optics Letters, 2009, 34(24): 3788-3790. doi: 10.1364/OL.34.003788 [14] Jocher C, Eidam T, Hädrich S, et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 2012, 37(21): 4407-4409. doi: 10.1364/OL.37.004407 [15] Schimpf D N, Seise E, Limpert J, et al. Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 2009, 17(7): 4997-5007. doi: 10.1364/OE.17.004997 [16] Schimpf D N, Seise E, Limpert J, et al. The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems[J]. Optics Express, 2008, 16(14): 10664-10674. doi: 10.1364/OE.16.010664 [17] Li Hao, Wang Meng, Wu Baiyi, et al. Femtosecond laser fabrication of chirped and tilted fiber Bragg gratings for stimulated Raman scattering suppression in kilowatt-level fiber lasers[J]. Optics Express, 2023, 31(8): 13393-13401. doi: 10.1364/OE.485143 [18] Song Huaqing, Yan Donglin, Wu Wenjie, et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG[J]. Optics Express, 2021, 29(13): 20535-20544. doi: 10.1364/OE.426979 [19] Tao Rumao, Xiao Hu, Zhang Hanwei, et al. Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities[J]. Optics Express, 2018, 26(19): 25098-25110. doi: 10.1364/OE.26.025098 [20] Farrow R L, Kliner D A V, Hadley G R, et al. Peak-power limits on fiber amplifiers imposed by self-focusing[J]. Optics Letters, 2006, 31(23): 3423-3425. [21] Huang Zhihua, Wang Jianjun, Lin Honghuan, et al. Self-focusing length in highly multimode ultra-large-mode-area fibers[J]. Optics Express, 2012, 20(13): 14604-14613. doi: 10.1364/OE.20.014604 [22] Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Academic Press, 2007. [23] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273 [24] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240 [25] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645 [26] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E. [27] Ke Weiwei, Wang Xiaojun, Bao Xianfeng, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 2013, 21(12): 14272-14281. doi: 10.1364/OE.21.014272 [28] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184 [29] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270 [30] Wang Guangjian, Song Jiaxin, Chen Yisha, et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 2022, 10: e22. doi: 10.1017/hpl.2022.12 [31] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75 [32] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709. [33] Grebing C, Müller M, Buldt J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998 [34] Teng Hao, He Xinkui, Zhao Kun, et al. Attosecond laser station[J]. Chinese Physics B, 2018, 27: 074203. [35] 杨康文. 光纤飞秒光梳高功率放大与控制[D]. 上海: 华东师范大学, 2014: 75-103Yang Kangwen. High power amplification and precise control of optical fiber frequency comb[D]. Shanghai: East China Normal University, 2014: 75-103 [36] Klenke A, Hädrich S, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522. [37] Huang Shuwei, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479. doi: 10.1038/nphoton.2011.140 [38] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843 [39] Stark H, Buldt J, Müller M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. doi: 10.1364/OL.417032 [40] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031 [41] Klenke A, Steinkopff A, Aleshire C, et al. 500W rod-type 4×4 multicore ultrafast fiber laser[J]. Optics Letter, 2022, 47(2): 345-348. doi: 10.1364/OL.445302 [42] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Optics Express, 2013, 21(11): 13555-13563. doi: 10.1364/OE.21.013555 [43] Chang W Z, Zhou Tong, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897 [44] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430 [45] Chia S H, Cirmi G, Fang Shaobo, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322. doi: 10.1364/OPTICA.1.000315 [46] Tian Haochen, Song Youjian, Meng Fei, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Optics Letters, 2016, 41(22): 5142-5145. doi: 10.1364/OL.41.005142 [47] Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 2017, 25(12): 13494-13503. doi: 10.1364/OE.25.013494 [48] Zhou Tong, Ruppe J, Zhu Cheng, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442 [49] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3: e211. [50] 粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47:0103001 doi: 10.3788/IRLA201847.0103001Su Rongtao, Zhou Pu, Zhang Pengfei, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47: 0103001 doi: 10.3788/IRLA201847.0103001 [51] 王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70:034206Wang Jingshang, Zhang Yao, Wang Junli, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70: 034206 [52] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255. doi: 10.1364/OL.37.000253 [53] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627 [54] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106-108. doi: 10.1364/OL.38.000106 [55] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 40(1): 89-92. doi: 10.1364/OL.40.000089 [56] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb: YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904. doi: 10.1364/OE.24.009896 [57] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 2013, 21(23): 29031-29042. doi: 10.1364/OE.21.029031 [58] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052. doi: 10.1364/OL.39.001049 [59] Yang Bowei, Liu Guanyu, Abulikemu A, et al. Coherent stacking of 128 pulses from a GHz repetition rate femtosecond Yb: fiber laser[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2020: JW2F. 28. [60] Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122: 297. [61] Ruppe J, Zhou Tong, Zhu Cheng, et al. Cascading of coherent pulse stacking using multiple Gires-Tournois interferometers[C]//Proceedings of the Advanced Solid State Lasers 2015. 2015: AW3A. 4. [62] Ruppe J, Chen Siyun, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C]//Proceedings of the Advanced Solid State Lasers 2016. 2016: AM4A. 6. [63] Ruppe III J M. Theoretical and experimental foundations of coherent pulse stacking amplification[D]. Michigan: University of Michigan, 2017: 105-107. [64] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343 [65] Stark H, Buldt J, Müller M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529 [66] Stark H, Benner M, Buldt J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617 [67] Zhou Shian, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873. doi: 10.1364/OL.32.000871 [68] Xu Yilun, Wilcox R, Byrd J, et al. FPGA-based optical cavity phase stabilization for coherent pulse stacking[J]. IEEE Journal of Quantum Electronics, 2018, 54: 1600111. [69] 许逸伦. 激光脉冲相干堆积的理论与实验研究[D]. 北京: 清华大学, 2018: 52-70Xu Yilun. Theoretical and experimental study on coherent pulse stacking[D]. Beijing: Tsinghua University, 2018: 52-70 [70] Pei Hanzhang. High fidelity coherent pulse stacking amplification with intelligent system controls[D]. Michigan: University of Michigan, 2021: 62-68. [71] Du Weizhi, Hyeon E, Pei Hanzhang, et al. Improved machine learning algorithms for optimizing coherent pulse stacking amplification[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2. [72] Pei Hanzhang, Whittlesey M, Du Qiang, et al. Design and operation of coherent pulse stacking amplification as a deep recurrent neural network[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2. [73] Abuduweili A, Yang Bowei, Zhang Zhigang. Control of delay lines with reinforcement learning for coherent pulse stacking[C]//Proceedings of 2020 Conference on Lasers and Electro-Optics. 2020: 1-2. [74] Abuduweili A, Wang Jie, Yang Bowei, et al. Reinforcement learning based robust control algorithms for coherent pulse stacking[J]. Optics Express, 2021, 29(16): 26068-26081. doi: 10.1364/OE.426906 [75] Ristau D. Laser-induced damage in optical materials[M]. Boca Raton: CRC Press, 2014. [76] 黄智蒙, 李克洪, 张帆, 等. 4路光纤超短脉冲阵列光程相位自适应控制[J]. 强激光与粒子束, 2022, 34:129902 doi: 10.11884/HPLPB202234.220366Huang Zhimeng, Li Kehong, Zhang Fan, et al. Adaptive control of optical path and phase in a coherent array of four ultrashort pulsed fiber[J]. High Power Laser and Particle Beams, 2022, 34: 129902 doi: 10.11884/HPLPB202234.220366 [77] 左言磊, 魏晓峰, 朱启华, 等. 用于快点火研究的超短脉冲的相干合成[J]. 强激光与粒子束, 2006, 18(12):2101-2104Zuo Yanlei, Wei Xiaofeng, Zhu Qihua, et al. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 2101-2104