留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤啁啾脉冲时域相干合成技术研究新进展

刘必达 黄智蒙 张帆 夏汉定 周丹丹 李剑彬 郑钧文 张锐 李平 彭志涛 朱启华 胡东霞

刘必达, 黄智蒙, 张帆, 等. 光纤啁啾脉冲时域相干合成技术研究新进展[J]. 强激光与粒子束, 2023, 35: 111001. doi: 10.11884/HPLPB202335.230308
引用本文: 刘必达, 黄智蒙, 张帆, 等. 光纤啁啾脉冲时域相干合成技术研究新进展[J]. 强激光与粒子束, 2023, 35: 111001. doi: 10.11884/HPLPB202335.230308
Liu Bida, Huang Zhimeng, Zhang Fan, et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 2023, 35: 111001. doi: 10.11884/HPLPB202335.230308
Citation: Liu Bida, Huang Zhimeng, Zhang Fan, et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 2023, 35: 111001. doi: 10.11884/HPLPB202335.230308

光纤啁啾脉冲时域相干合成技术研究新进展

doi: 10.11884/HPLPB202335.230308
基金项目: 国家自然科学基金项目(62075201)
详细信息
    作者简介:

    刘必达,liubida777@163.com

    通讯作者:

    黄智蒙,huangzhimeng@caep.cn

  • 中图分类号: TN248

Recent progress of temporal coherent combination of chirped pulses in fiber lasers

  • 摘要:

    脉冲时域相干合成技术主要通过对功率放大后的高重频脉冲序列进行时序合成,从而降低激光的重复频率,有效地提升输出脉冲的峰值功率与能量,避免放大过程中高峰值功率引起的非线性效应。该技术与空域相干合成相结合,能够突破单纤激光的性能极限,实现高能量、高平均功率和高峰值功率的超短脉冲激光输出,具有广阔的应用前景。介绍了超短脉冲光纤激光时域相干合成的基本原理和关键技术,综述了时域相干合成系统的发展历程及其关键技术的研究现状,重点介绍了近年来脉冲分割放大与脉冲相干堆积技术的研究进展,并对时域相干合成的不同技术路线进行了分析与比较,最后对其未来的发展方向进行了梳理,为相关领域的研究提供参考。

  • 图  1  脉冲分割-放大技术的原理与实验图[67]

    Figure  1.  Schematic of principle and experiment of DPA[67]

    图  2  EDPA系统原理图[47]

    Figure  2.  Principle of EDPA system[47]

    图  3  用于四个分割脉冲时域合成的EDPA系统示意图[47]

    Figure  3.  Schematic illustration of the EDPA setup used for the combination of four temporally separated pulses[47]

    图  4  基于EDPA的128脉冲时域相干合成系统实验结果[59]

    Figure  4.  Experimental results of temporal combination system of 128 pulse replicas based on EDPA setup[59]

    图  5  基于EDPA的时域与空域相干合成系统实验结果[65]

    Figure  5.  Experimental results of spatiotemporal combination system based on EDPA set up[65]

    图  6  基于EDPA的32 mJ时域与空域相干合成系统实验结果[66]

    Figure  6.  Experimental results of spatiotemporal combination system with a pulse energy of 32 mJ based on EDPA setup[66]

    图  7  堆积与倒空增强腔[49]

    Figure  7.  Stack and dump enhancement cavity[49]

    图  8  调制盘示意图[49]

    Figure  8.  Schematic of a chopper-wheel[49]

    图  9  SnD增强腔及其实验结果[60]

    Figure  9.  Set up of SnD enhancement cavity and its experimental results[60]

    图  10  行波GTI腔中的脉冲相干堆积[48]

    Figure  10.  Coherent pulse stacking in a traveling-wave Gires-Tournois interferometer[48]

    图  11  级联GTI腔 [48]

    Figure  11.  Cascaded GTI cavities[48]

    图  12  4+1 GTI腔中的27个脉冲相干堆积[62]

    Figure  12.  Coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[62]

    图  13  4+4 GTI腔中的81个脉冲相干堆积 [63]

    Figure  13.  Coherent pulse stacking of 81 pulses in a 4+4 GTI resonator sequence[63]

    图  14  4+4 GTI腔中的81个脉冲相干堆积模拟与实验结果[63]

    Figure  14.  Simulation and experimental result of coherent pulse dtacking of 81 pulses in a 4+4 GTI resonator sequence[63]

    图  15  4+4 GTI腔中的81个脉冲高效相干堆积实验结果[70]

    Figure  15.  Experimental result of efficient coherent pulse stacking of 81 pulses in a 4+4 GTI resonator sequence[70]

    图  16  基于深度复现神经网络的脉冲相干堆积原理[72]

    Figure  16.  Principle of coherent pulse stacking based on deep recurrent neural network[72]

    图  17  基于深度复现神经网络的脉冲相干堆积实验结果[72]

    Figure  17.  Experimental results of the coherent pulse stacking based on deep recurrent neural network[72]

    图  18  基于强化学习算法的DPA时域相干合成原理[73]

    Figure  18.  Principle of temporal coherent combination in DPA based on RL controller[73]

    图  19  基于SAC-SPGDM算法的DPA时域相干合成原理与算法流程[74]

    Figure  19.  Principle of temporal coherent combination in DPA based on SAC-SPGDM and the procedure of algorithm[74]

    图  20  延迟线-脉冲时域相干合成中各种控制算法比较[74]

    Figure  20.  Comparison of control algorithms in DL-CPS[74]

    图  21  基于4+4 GTI腔的脉冲相干堆积参数容差的理论模拟。脉冲对比度随腔相位、脉冲相位以及脉冲强度扰动的增大而下降[70]

    Figure  21.  Simulations illustrating the tolerances of the coherent pulse stacking parameters for 4+4 GTIs. Achievable pre-pulse contrast degrades in the presence of cavity phase errors, pulse phase errors, or pulse intensity errors[70]

    表  1  超短脉冲DPA代表性研究结果

    Table  1.   Representative results of DPA of ultra-short pulsed lasers

    year institution technical solution results
    2017 Friedrich-Schiller-Universität,
    Jena, Germany
    EDPA, free space delay lines N=4, tp=190 ps, fRR=135 kHz, J=3.4 μJ, η=82.7%;
    N=8, tp=190 ps, fRR=1075 kHz, η=76.8%[47]
    2019 Friedrich-Schiller-Universität,
    Jena, Germany
    EDPA+active CBC,
    free space delay lines
    N×M=8×12, tp=235 fs, Pave=674 W, fRR=25 kHz, J= 23 mJ,
    ηcomb = 71%, ηtemp=85%, ηsys=56%[65]
    2020 Peking University, China EDPA, free space delay lines N=128, fRR=200 kHz, η=35%[59]
    2023 Friedrich-Schiller-Universität,
    Jena, Germany
    EDPA+active CBC,
    free space delay lines
    N×M=8×16, tp=158 fs, Pave=703 W, fRR=20 kHz, J= 32 mJ,
    ηcomb = 86%, ηtemp=90%,ηsys=77%[66]
    下载: 导出CSV

    表  2  超短脉冲CPS代表性研究结果

    Table  2.   Representative results of CPS of ultra-short pulsed lasers

    year institution technical solution results
    2015 University of Michigan, USA Gires-Tournois interferometers N=5, tp=700 fs, fRR=10 kHz, J=μJ level, η= 97.4%[48]
    2016 University of Michigan, USA 4+1 Gires-Tournois interferometers N=27, tp=330 fs, η=50%[62]
    2017 University of Michigan, USA 4+4 Gires-Tournois interferometers N=81, tp=300 fs, fRR=1 kHz, J=multi-mJ, η=35%[63]
    2018 Tsinghua University 2+1 Gires-Tournois interferometers N=15, tp=10 ps, fRR=98 kHz, η= 76%[69]
    2021 University of Michigan, USA 4+4 Gires-Tournois interferometers N=81, tp=1 ns, J=4μJ, η=70.5%[70]
    下载: 导出CSV
  • [1] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260. doi: 10.1364/OE.19.000255
    [2] Wan Peng, Yang L M, Liu Jian. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854
    [3] Délen X, Zaouter Y, Martial I, et al. Yb: YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111. doi: 10.1364/OL.38.000109
    [4] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874. doi: 10.1038/nphoton.2013.280
    [5] Zhao Wei, Hu Xiaohong, Wang Yishan. Femtosecond-pulse fiber based amplification techniques and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 310513.
    [6] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.
    [7] Liu Yicai, Wu Jingfeng, Wen Xiaoxiao, et al. >100 W GHz femtosecond burst mode all-fiber laser system at 1.0 μm[J]. Optics Express, 2020, 28(9): 13414-13422. doi: 10.1364/OE.391515
    [8] Cao Xue, Li Qianglong, Li Feng, et al. Femtosecond Yb-doped tapered fiber pulse amplifiers with peak power of over hundred megawatts[J]. Optics Express, 2023, 31(4): 5507-5518. doi: 10.1364/OE.480637
    [9] Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862
    [10] Li Feng, Zhao Wei, Wang Yishan, et al. Large dispersion-managed broadband high-energy fiber femtosecond laser system with sub 300 fs pulses and high beam quality output[J]. Optics & Laser Technology, 2023, 157: 108653.
    [11] Zhang Yao, Wang Jingshang, Teng Hao, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
    [12] Yang Ruoao, Zhao Minghe, Jin Xingang, et al. Attosecond timing jitter from high repetition rate femtosecond “solid-state fiber lasers”[J]. Optica, 2022, 9(8): 874-877. doi: 10.1364/OPTICA.457835
    [13] Schimpf D N, SeiseE, EidamT, et al. Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping[J]. Optics Letters, 2009, 34(24): 3788-3790. doi: 10.1364/OL.34.003788
    [14] Jocher C, Eidam T, Hädrich S, et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 2012, 37(21): 4407-4409. doi: 10.1364/OL.37.004407
    [15] Schimpf D N, Seise E, Limpert J, et al. Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 2009, 17(7): 4997-5007. doi: 10.1364/OE.17.004997
    [16] Schimpf D N, Seise E, Limpert J, et al. The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems[J]. Optics Express, 2008, 16(14): 10664-10674. doi: 10.1364/OE.16.010664
    [17] Li Hao, Wang Meng, Wu Baiyi, et al. Femtosecond laser fabrication of chirped and tilted fiber Bragg gratings for stimulated Raman scattering suppression in kilowatt-level fiber lasers[J]. Optics Express, 2023, 31(8): 13393-13401. doi: 10.1364/OE.485143
    [18] Song Huaqing, Yan Donglin, Wu Wenjie, et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG[J]. Optics Express, 2021, 29(13): 20535-20544. doi: 10.1364/OE.426979
    [19] Tao Rumao, Xiao Hu, Zhang Hanwei, et al. Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities[J]. Optics Express, 2018, 26(19): 25098-25110. doi: 10.1364/OE.26.025098
    [20] Farrow R L, Kliner D A V, Hadley G R, et al. Peak-power limits on fiber amplifiers imposed by self-focusing[J]. Optics Letters, 2006, 31(23): 3423-3425.
    [21] Huang Zhihua, Wang Jianjun, Lin Honghuan, et al. Self-focusing length in highly multimode ultra-large-mode-area fibers[J]. Optics Express, 2012, 20(13): 14604-14613. doi: 10.1364/OE.20.014604
    [22] Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Academic Press, 2007.
    [23] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [24] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [25] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [26] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E.
    [27] Ke Weiwei, Wang Xiaojun, Bao Xianfeng, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 2013, 21(12): 14272-14281. doi: 10.1364/OE.21.014272
    [28] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184
    [29] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
    [30] Wang Guangjian, Song Jiaxin, Chen Yisha, et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 2022, 10: e22. doi: 10.1017/hpl.2022.12
    [31] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75
    [32] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
    [33] Grebing C, Müller M, Buldt J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998
    [34] Teng Hao, He Xinkui, Zhao Kun, et al. Attosecond laser station[J]. Chinese Physics B, 2018, 27: 074203.
    [35] 杨康文. 光纤飞秒光梳高功率放大与控制[D]. 上海: 华东师范大学, 2014: 75-103

    Yang Kangwen. High power amplification and precise control of optical fiber frequency comb[D]. Shanghai: East China Normal University, 2014: 75-103
    [36] Klenke A, Hädrich S, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522.
    [37] Huang Shuwei, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479. doi: 10.1038/nphoton.2011.140
    [38] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [39] Stark H, Buldt J, Müller M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. doi: 10.1364/OL.417032
    [40] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [41] Klenke A, Steinkopff A, Aleshire C, et al. 500W rod-type 4×4 multicore ultrafast fiber laser[J]. Optics Letter, 2022, 47(2): 345-348. doi: 10.1364/OL.445302
    [42] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Optics Express, 2013, 21(11): 13555-13563. doi: 10.1364/OE.21.013555
    [43] Chang W Z, Zhou Tong, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897
    [44] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430
    [45] Chia S H, Cirmi G, Fang Shaobo, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322. doi: 10.1364/OPTICA.1.000315
    [46] Tian Haochen, Song Youjian, Meng Fei, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Optics Letters, 2016, 41(22): 5142-5145. doi: 10.1364/OL.41.005142
    [47] Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 2017, 25(12): 13494-13503. doi: 10.1364/OE.25.013494
    [48] Zhou Tong, Ruppe J, Zhu Cheng, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442
    [49] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3: e211.
    [50] 粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47:0103001 doi: 10.3788/IRLA201847.0103001

    Su Rongtao, Zhou Pu, Zhang Pengfei, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47: 0103001 doi: 10.3788/IRLA201847.0103001
    [51] 王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70:034206

    Wang Jingshang, Zhang Yao, Wang Junli, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70: 034206
    [52] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255. doi: 10.1364/OL.37.000253
    [53] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627
    [54] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106-108. doi: 10.1364/OL.38.000106
    [55] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 40(1): 89-92. doi: 10.1364/OL.40.000089
    [56] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb: YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904. doi: 10.1364/OE.24.009896
    [57] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Optics Express, 2013, 21(23): 29031-29042. doi: 10.1364/OE.21.029031
    [58] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052. doi: 10.1364/OL.39.001049
    [59] Yang Bowei, Liu Guanyu, Abulikemu A, et al. Coherent stacking of 128 pulses from a GHz repetition rate femtosecond Yb: fiber laser[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2020: JW2F. 28.
    [60] Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122: 297.
    [61] Ruppe J, Zhou Tong, Zhu Cheng, et al. Cascading of coherent pulse stacking using multiple Gires-Tournois interferometers[C]//Proceedings of the Advanced Solid State Lasers 2015. 2015: AW3A. 4.
    [62] Ruppe J, Chen Siyun, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C]//Proceedings of the Advanced Solid State Lasers 2016. 2016: AM4A. 6.
    [63] Ruppe III J M. Theoretical and experimental foundations of coherent pulse stacking amplification[D]. Michigan: University of Michigan, 2017: 105-107.
    [64] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343
    [65] Stark H, Buldt J, Müller M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529
    [66] Stark H, Benner M, Buldt J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617
    [67] Zhou Shian, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873. doi: 10.1364/OL.32.000871
    [68] Xu Yilun, Wilcox R, Byrd J, et al. FPGA-based optical cavity phase stabilization for coherent pulse stacking[J]. IEEE Journal of Quantum Electronics, 2018, 54: 1600111.
    [69] 许逸伦. 激光脉冲相干堆积的理论与实验研究[D]. 北京: 清华大学, 2018: 52-70

    Xu Yilun. Theoretical and experimental study on coherent pulse stacking[D]. Beijing: Tsinghua University, 2018: 52-70
    [70] Pei Hanzhang. High fidelity coherent pulse stacking amplification with intelligent system controls[D]. Michigan: University of Michigan, 2021: 62-68.
    [71] Du Weizhi, Hyeon E, Pei Hanzhang, et al. Improved machine learning algorithms for optimizing coherent pulse stacking amplification[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
    [72] Pei Hanzhang, Whittlesey M, Du Qiang, et al. Design and operation of coherent pulse stacking amplification as a deep recurrent neural network[C]//Proceedings of 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
    [73] Abuduweili A, Yang Bowei, Zhang Zhigang. Control of delay lines with reinforcement learning for coherent pulse stacking[C]//Proceedings of 2020 Conference on Lasers and Electro-Optics. 2020: 1-2.
    [74] Abuduweili A, Wang Jie, Yang Bowei, et al. Reinforcement learning based robust control algorithms for coherent pulse stacking[J]. Optics Express, 2021, 29(16): 26068-26081. doi: 10.1364/OE.426906
    [75] Ristau D. Laser-induced damage in optical materials[M]. Boca Raton: CRC Press, 2014.
    [76] 黄智蒙, 李克洪, 张帆, 等. 4路光纤超短脉冲阵列光程相位自适应控制[J]. 强激光与粒子束, 2022, 34:129902 doi: 10.11884/HPLPB202234.220366

    Huang Zhimeng, Li Kehong, Zhang Fan, et al. Adaptive control of optical path and phase in a coherent array of four ultrashort pulsed fiber[J]. High Power Laser and Particle Beams, 2022, 34: 129902 doi: 10.11884/HPLPB202234.220366
    [77] 左言磊, 魏晓峰, 朱启华, 等. 用于快点火研究的超短脉冲的相干合成[J]. 强激光与粒子束, 2006, 18(12):2101-2104

    Zuo Yanlei, Wei Xiaofeng, Zhu Qihua, et al. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 2101-2104
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  94
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-10-25
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回