Design of an ultra-wideband thin frequency selective surface absorber
-
摘要: 设计了一种新型集总电阻加载超宽带薄型频率选择表面(FSS)吸波体。该吸波体使用单层单谐振FSS损耗层结构,具有厚度薄、宽带吸波且极化稳定的特点。FSS损耗层单元结构采用非单元中心对称轴集总电阻加载方法,并结合非均匀金属导带宽度和圆顶枝节加载设计有效拓宽了吸波带宽。该吸波体的等效电路分析及全波仿真结果均表明该结构在6.0~26.77 GHz频段内对电磁波吸波率能够达到90%,相对带宽达到126.8%。该吸波体总厚度为0.086λL(λL为吸波频段最低频率对应波长),仅为Rozanov理论极限厚度的1.09倍。对该吸波体进行加工与测试,实测结果与仿真结果一致,验证了设计的有效性。Abstract: This paper presents an novel ultra-wideband thin frequency selective surface (FSS) absorber loaded with lumped resistors. The proposed absorber consists of a single FSS lossy layer with a single resonance structure, and it features thinness, ultra-wide bandwidth and polarization-insensitivity. The absorber is designed with lumped resistors loaded at positions that deviates from the central symmetry axis of the unit cell. It also features the nonuniformly wide metallic strips and the addition of branches with circular tops. All these specific design effectively enhances the bandwidth of the absorber. Both an equivalent circuit model and full wave simulation demonstrate that the proposed absorber achieves over 90% absorption in the frequency range of 6.0−26.77 GHz, with a fractional bandwidth of 126.8%. The thickness of the proposed absorber is 0.086λL (λL is the wavelength at the lowest frequency), which is only 1.09 times the ultimate thickness based on Rozanov’s theory. A prototype of the proposed absorber is fabricated, and good agreements between experimental and simulated results are observed, validating the effectiveness of the design.
-
Key words:
- frequency selective surface /
- circuit analog absorber /
- thin /
- ultra-wideband /
- lumped resistor loaded
-
表 1 与文献中集总电阻FSS吸波体的性能比较
Table 1. Comparison between the proposed and reported FSS absorbers loaded with lumped resistors
reference bandwidth/GHz absorber
thickness/λLnumber of lumped
resistors in the unit cellstructure of
unit cell[10] 2.24~11.4(134.3%) 0.075 16 2 FSS lossy layers [13] 6.7~20.58(101.7%) 0.067 8 single FSS layer, multiple resonant [14] 2.68~12.19(127.9%) 0.08 8 single FSS layer, multiple resonant [15] 1.5~12.31(156.6%) 0.113 4 3D structure [19] 5.8~22.2(117.1%) 0.155 16 single FSS layer, dielectric compensation layer [20] 3.58~12.1 (108.67%) 0.077 4 single FSS layer, single resonant proposed absorber 6.0~26.77(126.8%) 0.086 4 single FSS layer, single resonant -
[1] 张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33:053055 doi: 10.11884/HPLPB202133.210044Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053055 doi: 10.11884/HPLPB202133.210044 [2] 唐朝京. 网电对抗下的复杂电磁环境再认识[J]. 强激光与粒子束, 2019, 31:103201 doi: 10.11884/HPLPB201931.190248Tang Chaojing. Recognition of complex electromagnetic environment under cyberspace countermeasures[J]. High Power Laser and Particle Beams, 2019, 31: 103201 doi: 10.11884/HPLPB201931.190248 [3] Yao Zhixin, Xiao Shaoqiu, Li Yan, et al. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 7276-7281. doi: 10.1109/TAP.2022.3149594 [4] Zhang Chonghuan, Liu Siyuan, Ni Haizhi, et al. An angle-stable ultra-wideband single-layer frequency selective surface absorber[J]. Electronics, 2023, 12: 3776. doi: 10.3390/electronics12183776 [5] Munk B A. Frequency selective surfaces: Theory and design[M]. New York: Wiley, 2000. [6] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222 doi: 10.11884/HPLPB201931.190210Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210 [7] Kundu D, Baghel S, Mohan A, et al. Design and analysis of printed lossy capacitive surface-based ultrawideband low-profile absorber[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3533-3538. doi: 10.1109/TAP.2019.2902660 [8] Fan Yudi, Li Da, Ma Hanzhi, et al. Ultrawideband dual-polarized frequency-selective absorber with tunable reflective notch[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2855-2860. doi: 10.1109/TAP.2023.3239161 [9] Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333 [10] Yao Zhixin, Xiao Shaoqiu, Jiang Zhiguo, et al. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 591-595. doi: 10.1109/LAWP.2020.2972919 [11] He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729 [12] Sun Zihan, Yan Liping, Zhao Xiang, et al. An ultrawideband frequency selective surface absorber with high polarization-independent angular stability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 789-793. doi: 10.1109/LAWP.2022.3225582 [13] Sambhav S, Ghosh J, Singh A K. Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1333-1340. doi: 10.1109/TEMC.2021.3058583 [14] Zhang Binchao, Jin Cheng, Shen Zhongxiang. Low-profile broadband absorber based on multimode resistor-embedded metallic strips[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 835-843. doi: 10.1109/TMTT.2019.2956933 [15] Luo Guoqing, Yu Weiliang, Yu Yufeng, et al. A three-dimensional design of ultra-wideband microwave absorbers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(10): 4206-4215. doi: 10.1109/TMTT.2020.3011437 [16] Huang Hao, Shen Zhongxiang, Omar A A. 3-D absorptive frequency selective reflector for antenna radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5908-5917. doi: 10.1109/TAP.2017.2751670 [17] Mou Jinchao, Shen Zhongxiang. Design and experimental demonstration of non-foster active absorber[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 696-704. doi: 10.1109/TAP.2016.2639012 [18] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491 [19] Ma Zheyipei, Jiang Chao, Cao Wenbo, et al. An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9376-9384. doi: 10.1109/TAP.2022.3177490 [20] Parameswaran A, Ovhal A A, Kundu D, et al. A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1758-1766. doi: 10.1109/TEMC.2022.3196406 -