留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封闭舱室电磁屏蔽用频率选择表面吸波体设计

金雨霜 王东俊 张袁 刘长军 闫丽萍

金雨霜, 王东俊, 张袁, 等. 封闭舱室电磁屏蔽用频率选择表面吸波体设计[J]. 强激光与粒子束, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446
引用本文: 金雨霜, 王东俊, 张袁, 等. 封闭舱室电磁屏蔽用频率选择表面吸波体设计[J]. 强激光与粒子束, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446
Jin Yushuang, Wang Dongjun, Zhang Yuan, et al. A frequency selective surface absorber for electromagnetic shielding in enclosed cabins[J]. High Power Laser and Particle Beams, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446
Citation: Jin Yushuang, Wang Dongjun, Zhang Yuan, et al. A frequency selective surface absorber for electromagnetic shielding in enclosed cabins[J]. High Power Laser and Particle Beams, 2024, 36: 063002. doi: 10.11884/HPLPB202436.230446

封闭舱室电磁屏蔽用频率选择表面吸波体设计

doi: 10.11884/HPLPB202436.230446
基金项目: 国家自然科学基金区域联合创新基金项目(U22A2015)
详细信息
    作者简介:

    金雨霜,jinyushuang1@qq.com

    通讯作者:

    闫丽萍,liping_yan@scu.edu.cn

  • 中图分类号: TN03

A frequency selective surface absorber for electromagnetic shielding in enclosed cabins

  • 摘要: 为了解决封闭舱室内反射型电磁屏蔽结构引起的电磁场水平易于升高的问题,提出了一种斜入射电磁波相位补偿频率选择表面(FSS)吸波体设计方法,并基于该方法设计了一款超宽带、角度稳定的FSS吸波型电磁屏蔽结构。利用吸波结构中不同介质层对斜入射时高频和低频的电磁波相位分别进行补偿,实现了宽频带内良好的角度稳定性。在此基础上,采用宽度渐变条带,并结合开缝和顶端加载技术设计出了新型十字FSS单元结构,有效拓展了该单层单谐振FSS吸波体的工作带宽。仿真结果表明,该结构90%吸波频带为3.9~25.8 GHz(相对带宽147.5%);在4.7~22.1 GHz(129.9%)频带内,两种极化下满足90%吸波率的角度稳定性达30°;即使斜入射增加到50°时,吸波率仍高于80%。对所设计的吸波体进行加工和测试,实验结果与仿真结果吻合良好,验证了设计的有效性。
  • 图  1  FSS吸波体单元结构

    Figure  1.  Unit cell structure of the proposed FSS absorber

    图  2  所提出的吸波结构在斜入射下的相位补偿机理

    Figure  2.  Phase compensation mechanism of the proposed absorber for oblique incidence

    图  3  FSS损耗层的演化过程

    Figure  3.  Design evolution of the FSS lossy layer

    图  4  FSS 1、FSS 2和FSS 3所构成吸波体的输入阻抗及反射系数对比

    Figure  4.  Comparison of input impedance and reflection coefficient of FSS 1, FSS 2 and FSS 3 absorbers

    图  5  FSS 2和FSS 3吸波体的表面电流密度分布

    Figure  5.  Surface current density distribution of FSS 2 and FSS 3 absorbers

    图  6  FSS 3、FSS 4和FSS 5所构成吸波体的输入阻抗及反射系数对比

    Figure  6.  Comparison of input impedance and reflection coefficient for FSS 3, FSS 4 and FSS 5 absorbers

    图  7  FSS 4和FSS 5吸波体的表面电流密度分布

    Figure  7.  Surface current density distribution of FSS 4 and FSS 5 absorbers

    图  8  斜入射下吸波体的吸波率曲线

    Figure  8.  Absorptivity of the absorber at different incidence angles

    图  9  主要结构参数对吸波率的影响

    Figure  9.  Influence of main structure parameters on the absorptivity

    图  10  吸波体样品照片及实验测试系统

    Figure  10.  Prototype of the absorber and measurement system

    图  11  垂直入射时实测和仿真的吸波率对比

    Figure  11.  Comparison of measured and simulated absorptivity at normal incidence

    图  12  吸波体在斜入射下的测试结果

    Figure  12.  Measured absorptivity of the absorber at different incidence angles

    表  1  FSS吸波体结构参数

    Table  1.   Structure parameters of the proposed FSS absorber

    p/mm h1/mm h2/mm h3/mm h4/mm l1/mm l2/mm l3/mm
    7.54.60.5081.11.02.52.41.1
    w1/mmw2/mmw3/mmw4/mms1/mms2/mmR
    0.50.51.60.50.50.3120
    下载: 导出CSV

    表  2  与其他FSS吸波体的仿真性能对比

    Table  2.   Simulation performance comparison with other FSS absorbers

    references absorption band
    (A>90%)/(GHz)
    FBW/% thickness/
    λL
    angular stability
    (A> 80%)
    number of lumped resistors
    in the unit cell
    Num/Com
    Ref.[11] 4.7–16.75 112.4 0.103 30° * 8 1/No
    Ref.[12] 6.7–20.58 101.7 0.067 TE30°、TM45° 8 1/No
    Ref.[13] 2.7–12.7 130.0 0.084 40° 8 1/No
    Ref.[14] 2.24–11.4 134.3 0.075 45° 16 2/No
    Ref.[15] 3.87–14.84 117.0 0.190 TE40°、TM50° 8 2/No
    Ref.[17] 2.11–3.89 59.3 0.09 50° * 8 3D
    Ref.[18] 5.8–22.2 117.1 0.155 TE40°、TM50° * 16 1/Yes
    Ref.[20] 1.08–5.9 138.1 0.113 45° * 8 1/Yes
    Ref.[25] 3.58–12.1 108.7 0.077 30° 4 1/No
    this work 3.9–25.8 147.8 0.094 50° 4 1/Yes
    FBW : fractional bandwidth, FBW = 2(fhfl)/(fh+fl); A : absorptivity; * : A> 90%; Num: number of lossy FSSs; Com: compensation layer.
    下载: 导出CSV
  • [1] 秦风, 蔡金良, 曹学军, 等. 车辆强电磁脉冲环境适应性研究[J]. 强激光与粒子束, 2019, 31:103203 doi: 10.11884/HPLPB201931.190233

    Qin Feng, Cai Jinliang, Cao Xuejun, et al. Investigation on the adaptability of vehicle in high-intensity electromagnetic pulse environment[J]. High Power Laser and Particle Beams, 2019, 31: 103203 doi: 10.11884/HPLPB201931.190233
    [2] 李克训, 马江将, 张泽奎, 等. 环氧树脂基碳纳米复合电磁屏蔽材料研究[J]. 强激光与粒子束, 2019, 31:103204 doi: 10.11884/HPLPB201931.190102

    Li Kexun, Ma Jiangjiang, Zhang Zekui, et al. Study on epoxy resin-based carbon nanocomposite for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2019, 31: 103204 doi: 10.11884/HPLPB201931.190102
    [3] 张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33:053005 doi: 10.11884/HPLPB202133.210044

    Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053005 doi: 10.11884/HPLPB202133.210044
    [4] 沈宁, 闫丽萍, 谷智渊, 等. 频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析[J]. 强激光与粒子束, 2021, 33:053006 doi: 10.11884/HPLPB202133.210043

    Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006 doi: 10.11884/HPLPB202133.210043
    [5] Sun Zihan, Yan Liping, Zhao Xiang, et al. An ultrawideband frequency selective surface absorber with high polarization-independent angular stability[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 789-793. doi: 10.1109/LAWP.2022.3225582
    [6] Zhang Chonghuan, Liu Siyuan, Ni Haizhi, et al. An angle-stable ultra-wideband single-layer frequency selective surface absorber[J]. Electronics, 2023, 12: 3776. doi: 10.3390/electronics12183776
    [7] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222 doi: 10.11884/HPLPB201931.190210

    Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210
    [8] Jia Yuxin, Zhai Huiqing, Guo Chaozong, et al. A dual-band composite frequency selective rasorber with broadband absorption performance[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 1992-1996. doi: 10.1109/LAWP.2023.3271462
    [9] Fan Yudi, Li Da, Ma Hanzhi, et al. Ultrawideband dual-polarized frequency-selective absorber with tunable reflective notch[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2855-2860. doi: 10.1109/TAP.2023.3239161
    [10] Zhang Binchao, Jin Cheng, Shen Zhongxiang. Low-profile broadband absorber based on multimode resistor-embedded metallic strips[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 835-843. doi: 10.1109/TMTT.2019.2956933
    [11] 曹文博, 麻晢乂培, 黄小忠, 等. 基于单层频率选择表面的轻质宽频吸波体设计[J]. 电子元件与材料, 2022, 41(2):180-185

    Cao Wenbo, Ma Zheyipei, Huang Xiaozhong, et al. Design of lightweight broadband absorber based on single-layer frequency selective surface[J]. Electronic Components and Materials, 2022, 41(2): 180-185
    [12] Sambhav S, Ghosh J, Singh A K. Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1333-1340. doi: 10.1109/TEMC.2021.3058583
    [13] Zhang Yufei, Yang Wenrong, Li Xiaonan, et al. Design and analysis of a broadband microwave metamaterial absorber[J]. IEEE Photonics Journal, 2023, 15: 4600810.
    [14] Yao Zhixin, Xiao Shaoqiu, Jiang Zhiguo, et al. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 591-595. doi: 10.1109/LAWP.2020.2972919
    [15] Lim D, Lim S. Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1887-1891. doi: 10.1109/LAWP.2019.2932399
    [16] Luo Guoqing, Yu Weiliang, Yu Yufeng, et al. A three-dimensional design of ultra-wideband microwave absorbers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(10): 4206-4215. doi: 10.1109/TMTT.2020.3011437
    [17] Shi Ting, Jin Lei, Han Lei, et al. Dispersion-engineered, broadband, wide-angle, polarization-independent microwave metamaterial absorber[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 229-238. doi: 10.1109/TAP.2020.3001673
    [18] Ma Zheyipei, Jiang Chao, Cao Wenbo, et al. An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9376-9384. doi: 10.1109/TAP.2022.3177490
    [19] Rao Tingli, Yu Shixing, Shi Rongyang, et al. A dielectric matching layer loaded frequency selective rasorber with enhanced angular stabilities[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(7): 1552-1556. doi: 10.1109/LAWP.2023.3250844
    [20] Yao Zhixin, Xiao Shaoqiu, Li Yan, et al. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 7276-7281. doi: 10.1109/TAP.2022.3149594
    [21] Zhao Yutong, Chen Biao, Wu Bian. Miniaturized periodicity broadband absorber with via-based hybrid metal-graphene structure for large-angle RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(4): 2832-2840. doi: 10.1109/TAP.2021.3125384
    [22] Munk B A, Munk P, Pryor J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(1): 186-193. doi: 10.1109/TAP.2006.888395
    [23] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491
    [24] Kazemzadeh A. Nonmagnetic ultrawideband absorber with optimal thickness[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(1): 135-140. doi: 10.1109/TAP.2010.2090481
    [25] Parameswaran A, Ovhal A A, Kundu D, et al. A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1758-1766. doi: 10.1109/TEMC.2022.3196406
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  41
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-04-25
  • 录用日期:  2024-03-12
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-05-11

目录

    /

    返回文章
    返回