留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光照明的荧光粉@SiO2气凝胶复合发光材料的制备与发光性能研究

冯杰 高燕 朱家艺 毕于铁 任洪波

冯杰, 高燕, 朱家艺, 等. 用于激光照明的荧光粉@SiO2气凝胶复合发光材料的制备与发光性能研究[J]. 强激光与粒子束, 2024, 36: 061007. doi: 10.11884/HPLPB202436.240010
引用本文: 冯杰, 高燕, 朱家艺, 等. 用于激光照明的荧光粉@SiO2气凝胶复合发光材料的制备与发光性能研究[J]. 强激光与粒子束, 2024, 36: 061007. doi: 10.11884/HPLPB202436.240010
Feng Jie, Gao Yan, Zhu Jiayi, et al. Preparation and luminescence performance of phosphor@SiO2 aerogel composite luminescent material for laser illumination[J]. High Power Laser and Particle Beams, 2024, 36: 061007. doi: 10.11884/HPLPB202436.240010
Citation: Feng Jie, Gao Yan, Zhu Jiayi, et al. Preparation and luminescence performance of phosphor@SiO2 aerogel composite luminescent material for laser illumination[J]. High Power Laser and Particle Beams, 2024, 36: 061007. doi: 10.11884/HPLPB202436.240010

用于激光照明的荧光粉@SiO2气凝胶复合发光材料的制备与发光性能研究

doi: 10.11884/HPLPB202436.240010
基金项目: 环境友好能源材料国家重点实验室自主基金项目(21fksy28);反应堆燃料与材料重点实验室基金项目(STRFML-2021-02、STRFML-2021-10)
详细信息
    作者简介:

    冯 杰,1063720625@qq.com

    通讯作者:

    任洪波,Renhb@swust.edu.cn

  • 中图分类号: O469

Preparation and luminescence performance of phosphor@SiO2 aerogel composite luminescent material for laser illumination

  • 摘要: 通过溶胶-凝胶法成功制备了Tb3Al5O12 (TAG) 荧光粉。热分析数据证实,增加H3BO3摩尔比会导致最终相的转变温度降低。同时,通过扫描电镜观察到,H3BO3摩尔比的提高会导致荧光粉颗粒尺寸增大。在激发波长为275 nm的条件下,发射光谱在480~650 nm范围内出现了由Tb3+的5d→4f跃迁产生的多个发射峰。然后通过物理掺杂和超临界干燥工艺成功制备了荧光粉@SiO2气凝胶复合发光材料。与荧光粉相比,荧光粉@SiO2气凝胶复合发光材料的内量子产率显著增加,可达63.64%。采用波长为355 nm的激光源激发荧光粉@SiO2气凝胶复合发光材料,可实现长距离无导线方式发光,并具有良好均匀性。以上结果证明了荧光粉@SiO2气凝胶复合发光材料在激光应急照明领域具有潜在的应用前景。
  • 图  1  不同H3BO3摩尔比前驱体粉末的TG-DSC曲线

    Figure  1.  TG-DSC curves of precursor powders with different molar ratio

    图  2  LB-1、LB-2、LB-4、LB-6、HB-2样品的红外光谱

    Figure  2.  Infrared spectra of LB-1, LB-2, LB-4, LB-6, HB-2 samples

    图  3  不同H3BO3摩尔比样品的XRD图谱

    Figure  3.  XRD patterns of samples with different H3BO3 molar ratio

    图  4  LB-1、LB-3和LB-6样品的SEM图

    Figure  4.  SEM images of LB-1, LB-3 and LB-6 samples

    图  5  室温下LB-1样品的紫外吸收光谱

    Figure  5.  UV absorption spectrum of LB-1 sample at room temperature

    图  6  低H3BO3摩尔比体系下样品的发射光谱 (λex=275 nm)

    Figure  6.  Emission spectra of samples in the system with low H3BO3 molar ratio (λex=275 nm)

    图  7  高H3BO3摩尔比体系下样品的发射光谱(λex = 275 nm)

    Figure  7.  Emission spectra of samples in the system with high H3BO3 molar ratio (λex = 275 nm)

    图  8  不同激发条件下的SA-1样品及其色坐标图

    Figure  8.  SA-1 samples under different excitation conditions and color coordinate plot

    图  9  SA-1样品的内量子产率图

    Figure  9.  Internal quantum yield plot for SA-1 samples

    表  1  前驱体的试剂摩尔比

    Table  1.   Molar ratio of the precursor reagents

    sample molar ratio of Tb4O7, Al(NO3)3·9H2O and H3BO3
    LB-1 3:20.0:0
    LB-2 3:19.6:0.40
    LB-3 3:18.8:1.20
    LB-4 3:18.0:2.00
    LB-5 3:17.2:2.80
    LB-6 3:16.8:3.20
    HB-1 3:20.0:23.0
    HB-2 3:20.0:32.2
    HB-3 3:20.0:36.8
    HB-4 3:20.0:46.0
    下载: 导出CSV

    表  2  SiO2气凝胶与荧光粉@SiO2气凝胶复合发光材料样品编号

    Table  2.   SiO2 aerogel and phosphor@SiO2 aerogel composite luminescent material samples

    sample C/%
    SA-0 0
    SA-1 15
    SA-2 20
    下载: 导出CSV

    表  3  低H3BO3摩尔比体系样品的XRD图谱进行精修后所获得的晶胞参数

    Table  3.   Cellular parameters obtained after refinement of XRD patterns of samples from the low H3BO3 molar ratio system

    sample a/nm b/nm c/nm V/nm3
    LB-1 1.208526 1.208526 1.208526 1.76509
    LB-2 1.208450 1.208450 1.208450 1.76476
    LB-3 1.208303 1.208303 1.208303 1.76412
    LB-4 1.208256 1.208256 1.208256 1.76391
    LB-5 1.208259 1.208259 1.208259 1.76392
    LB-6 1.208254 1.208254 1.208254 1.76390
    下载: 导出CSV

    表  4  HB-4、SA-0、SA-1和SA-2样品的性能参数

    Table  4.   Performance parameters of HB-4, SA-0, SA-1 and SA-2 samples

    sample Y/% specific surface area/(m2·g−1)
    HB-4 53.61
    SA-0 577.76
    SA-1 63.64 482.24
    SA-2 23.07 441.38
    下载: 导出CSV
  • [1] 卢锋. 地铁区间隧道消防应急照明与疏散指示系统设计研究[J]. 城市轨道交通研究, 2023, 26(s2):128-134

    Lu Feng. Design study of fire emergency lighting and evacuation indication system for metro interval tunnel[J]. Urban Mass Transit, 2023, 26(s2): 128-134
    [2] 王欢, 司镇, 李明进. 高层建筑应急照明设计分析[J]. 光源与照明, 2023(6):46-48

    Wang Huan, Si Zhen, Li Mingjin. Analysis of high-rise building emergency lighting design[J]. Lamps & Lighting, 2023(6): 46-48
    [3] Hasirci Tugcu Z, Cavdar I H. A novel emergency lighting system design eliminating extra phase line installation[J/OL]. IETE Journal of Research, 2023, 69: 1-10(2023-02-12). https://www.tandfonline.com/doi/full/10.1080/03772063.2023.2173675.
    [4] Saito M, Kondo H. Battery-independent emergency illumination with RGB phosphors[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(2): 9-13. doi: 10.1109/MAES.2007.323293
    [5] Pinto R A, Cosetin m R, Campos A, et al. Compact emergency lamp using power LEDs[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1728-1738. doi: 10.1109/TIE.2011.2159352
    [6] Quintana-Barcia P, Ribas J, Juarez-Leon F A, et al. Permanent emergency LED lamp based on a series single-switch resonant converter with battery clamp[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 9992-10000. doi: 10.1109/TIE.2021.3123649
    [7] 李强, 郑静霞, 杨永珍, 等. 激光照明用荧光材料的研究进展[J]. 中国材料进展, 2023, 42(4):343-352

    Li Qiang, Zheng Jingxia, Yang Yongzhen, et al. Research progress of fluorescent materials for laser lighting[J]. Materials China, 2023, 42(4): 343-352
    [8] 王芬, 王丹. 激光照明与显示用荧光材料研究进展[J]. 中国材料进展, 2023, 42(4):289-295

    Wang Fen, Wang Dan. Progress of phosphor materials for laser lighting and display[J]. Materials China, 2023, 42(4): 289-295
    [9] 魏然. 激光照明与显示用荧光玻璃薄膜的光学特性研究[D]. 杭州: 中国计量大学, 2020: 1-51

    Wei Ran. Optical properties of phosphor-in-glass films for laser lighting and display[D]. Hangzhou: China Jiliang University, 2020: 1-51
    [10] 禹化龙. 高功率激光光纤远距离传输及光电转换技术研究[D]. 西安: 西安电子科技大学, 2022: 1-30

    Yu Hualong. Research on high power laser over fiber long distance transmission and photoelectric conversion technology[D]. Xian: Xidian University, 2022: 1-30
    [11] Zhang Yunli, Hu Song, Wang Zhengjuan, et al. Pore-existing Lu3Al5O12:Ce ceramic phosphor: an efficient green color converter for laser light source[J]. Journal of Luminescence, 2018, 197: 331-334. doi: 10.1016/j.jlumin.2018.01.014
    [12] Wang Jinchun, Tang Xueyuan, Zheng Peng, et al. Thermally self-managing YAG:Ce–Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J]. Journal of Materials Chemistry C, 2019, 7(13): 3901-3908. doi: 10.1039/C9TC00506D
    [13] Lin Tuan, Chen Hexin, Li Shuxing, et al. Bi-color phosphor-in-glass films achieve superior color quality laser-driven stage spotlights[J]. Chemical Engineering Journal, 2022, 444: 136591. doi: 10.1016/j.cej.2022.136591
    [14] Zhu Qiangqiang, Li Shuxing, Yuan Qiang, et al. Transparent YAG:Ce ceramic with designed low light scattering for high-power blue LED and LD applications[J]. Journal of the European Ceramic Society, 2021, 41(1): 735-740. doi: 10.1016/j.jeurceramsoc.2020.09.006
    [15] Ji Xiaofei, Du Yu, Zhang Xuetong. Elaborate size-tuning of silica aerogel building blocks enables laser-driven lighting[J]. Advanced Materials, 2022, 34: 2107168. doi: 10.1002/adma.202107168
    [16] 李敏, 孙晓园, 范小暄, 等. Sr6Lu2Al4O15:Tb3+荧光粉的发光特性[J]. 发光学报, 2023, 44(11):1940-1949 doi: 10.37188/CJL.20230147

    Li Min, Sun Xiaoyuan, Fan Xiaoxuan, et al. Photoluminescence properties of Sr6Lu2Al4O15:Tb3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(11): 1940-1949 doi: 10.37188/CJL.20230147
    [17] 孟晓燕, 廖云, 张丽蓉, 等. GdPO4:Tb3+荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2023, 53(1):107-114

    Meng Xiaoyan, Liao Yun, Zhang Lirong, et al. Preparation and luminescent properties of GdPO4:Tb3+ phosphors[J]. Journal of Synthetic Crystals, 2023, 53(1): 107-114
    [18] 尹学爱, 吕树臣. Sr0.3Ca0.7MoO4:Tb3+, Eu3+荧光粉的颜色可调发光和温度传感特性[J]. 发光学报, 2023, 44(4):607-614 doi: 10.37188/CJL.20220376

    Yin Xueai, Lyu Shuchen. Color-tunable luminescence and temperature sensing behavior of Sr0.3Ca0.7MoO4:Tb3+, Eu3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(4): 607-614 doi: 10.37188/CJL.20220376
    [19] Ye Changwen. Ca2MgSi2O7: Ce3+/Tb3+/Eu3+ phosphors: multicolor tunable luminescence via Ce3+ → Tb3+, Tb3+ → Eu3+ and Ce3+ → Tb3+ → Eu3+ energy transfers[J]. Journal of Luminescence, 2019, 213: 75-81. doi: 10.1016/j.jlumin.2019.05.004
    [20] Jiao Mengmeng, Yang Chuanlu, Li Yalin, et al. Potential color tunable Sr3LaNa(PO4)3F:Eu2+/Tb3+/Mn2+ phosphor induced by Eu2+ → Tb3+ and Tb3+ → Mn2+ energy transfer for WLEDs[J]. Physical Chemistry Chemical Physics, 2017, 19(36): 24566-24573. doi: 10.1039/C7CP04691J
    [21] Duan Yutong, Zhao Chenyao, Lin Hui, et al. Photoluminescence properties of Tb3Al5O12:Ce3+, Mn2+ phosphor ceramics for high color rendering index warm white LEDs[J]. Optical Materials, 2021, 111: 110670. doi: 10.1016/j.optmat.2020.110670
    [22] Mhin S W, Ryu J H, Kim K M, et al. Pulsed-laser-induced simple synthetic route for Tb3Al5O12:Ce3+ colloidal nanocrystals and their luminescent properties[J]. Nanoscale Research Letters, 2009, 4: 888. doi: 10.1007/s11671-009-9331-9
    [23] Onishi Y, Nakamura T, Adachi S. Luminescence properties of Tb3Al5O12 garnet and related compounds synthesized by the metal organic decomposition method[J]. Journal of Luminescence, 2017, 183: 193-200. doi: 10.1016/j.jlumin.2016.11.035
    [24] Oya T, Nakauchi D, Okada G, et al. Scintillation properties of Ce-doped Tb3Al5O12[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 134-139.
    [25] 龚芮, 任洪波, 朱家艺, 等. 制备条件对溶胶凝胶制备Tb3Al5O12:Ce3+荧光粉性能的影响[J]. 西南科技大学学报, 2017, 32(2):7-11,17

    Gong Rui, Ren Hongbo, Zhu Jiayi, et al. Effect of fabrication conditions on properties of Ce3+ doped terbium aluminum garnet phosphor by sol-gel method[J]. Journal of Southwest University of Science and Technology, 2017, 32(2): 7-11,17
    [26] Nag A, Kutty T R N. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy[J]. Journal of Alloys and Compounds, 2003, 354(1/2): 221-231.
    [27] 秦宇星. SrAl2O4:Eu2+, Dy3+长余辉光致发光材料的制备及其硼掺杂作用机理[D]. 天津: 天津大学, 2006: 1-44

    Qin Yuxing. Preparation of SrAl2O4: Eu2+, Dy3+ phosphor and the effect of born substitution[D]. Tianjin: Tianjin University, 2006: 1-44
    [28] Choi T Y, Song Y H, Lee H R, et al. The effect of AlN and flux addition on luminescence properties of Ce doped TAG phosphor for white light emitting diodes[J]. Materials Science and Engineering:B, 2012, 177(7): 500-503. doi: 10.1016/j.mseb.2011.10.005
    [29] Witkiewicz-Lukaszek S, Gorbenko V, Zorenko T, et al. Epitaxial growth of composite scintillators based on Tb3Al5O12:Ce single crystalline films and Gd3Al2.5Ga2.5O12 : Ce crystal substrates[J]. CrystEngComm, 2018, 20(28): 3994-4002. doi: 10.1039/C8CE00536B
    [30] Shabir H, Lal B, Rafat M. Sol–gel synthesis of Eu3+:Tb3Al5O12 nanophosphor[J]. Journal of Sol-Gel Science and Technology, 2010, 53(2): 399-404. doi: 10.1007/s10971-009-2109-9
    [31] Batentschuk M, Osvet A, Schierning G, et al. Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12[J]. Radiation Measurements, 2004, 38(4): 539-43.
    [32] Onishi Y, Nakamura T, Adachi S. Photoluminescence properties of Tb3Al5O12:Ce3+ garnet synthesized by the metal organic decomposition method[J]. Optical Materials, 2017, 64: 557-563. doi: 10.1016/j.optmat.2017.01.024
    [33] Foster C, Koschan M, Wu Yuntao, et al. Boron codoping of Czochralski grown lutetium aluminum garnet and the effect on scintillation properties[J]. Journal of Crystal Growth, 2018, 486: 126-129. doi: 10.1016/j.jcrysgro.2018.01.028
    [34] Inkrataite G, Keil J N, Zarkov A, et al. The effect of boron and scandium doping on the luminescence of LuAG:Ce and GdAG:Ce for application as scintillators[J]. Journal of Alloys and Compounds, 2023, 966: 171634. doi: 10.1016/j.jallcom.2023.171634
    [35] Inkrataite G, Kemere M, Sarakovskis A, et al. Influence of boron on the essential properties for new generation scintillators[J]. Journal of Alloys and Compounds, 2021, 875: 160002. doi: 10.1016/j.jallcom.2021.160002
    [36] Poria K, Lohan R, Bhatia S, et al. Lumino-structural properties of Dy3+ activated Na3Ba2LaNb10O30 phosphors with enhanced internal quantum yield for w-LEDs[J]. RSC Advances, 2023, 13(17): 11557-11568. doi: 10.1039/D3RA01260C
    [37] Rajendran M, Vaidyanathan S. Systematic investigation of Eu3+ activated Na2Ln4(MoO4)7[Ln = La, Gd and Y] narrow band red emitting phosphors for hybrid white LEDs and plant growth[J]. New Journal of Chemistry, 2020, 44(35): 14823-14836. doi: 10.1039/D0NJ03766D
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  39
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-03-11
  • 录用日期:  2024-03-11
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-05-11

目录

    /

    返回文章
    返回