留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢闸流管工作特性研究

赵言昊 饶波 杨勇 俞豪俊 张明

赵言昊, 饶波, 杨勇, 等. 氢闸流管工作特性研究[J]. 强激光与粒子束, 2024, 36: 055011. doi: 10.11884/HPLPB202436.240040
引用本文: 赵言昊, 饶波, 杨勇, 等. 氢闸流管工作特性研究[J]. 强激光与粒子束, 2024, 36: 055011. doi: 10.11884/HPLPB202436.240040
Zhao Yanhao, Rao Bo, Yang Yong, et al. Research on working characteristics of hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055011. doi: 10.11884/HPLPB202436.240040
Citation: Zhao Yanhao, Rao Bo, Yang Yong, et al. Research on working characteristics of hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055011. doi: 10.11884/HPLPB202436.240040

氢闸流管工作特性研究

doi: 10.11884/HPLPB202436.240040
基金项目: 国家重点研发计划项目(2017YFE0301803);国家自然科学基金项目(51821005)
详细信息
    作者简介:

    赵言昊,2634672322@qq.com

    通讯作者:

    饶 波,267310267@qq.com

  • 中图分类号: TM206

Research on working characteristics of hydrogen thyratron

  • 摘要: 实验研究了氢闸流管的工作特性以及均压处理的优化效果。实验发现加热电压对氢闸流管的工作特性影响较大,在不出现自放电的前提下,使用更高的加热电压能够获得更好的导通性能。触发脉冲的差异以及不同的阳极电压对氢闸流管的导通性能基本无影响。采用电阻对氢闸流管进行均压,能够使其电压分布更加均匀,并且对自放电现象有一些改善。该研究为氢闸流管的使用提供了参考。
  • 图  1  氢闸流管测试平台电路图

    Figure  1.  Circuit diagram of hydrogen thyratron test platform

    图  2  导通率随加热电压的变化关系

    Figure  2.  Relationship between conduction ratio and heating voltage

    图  3  氢闸流管在两种触发脉冲和不同阳极电压下的导通概率随加热电压的变化关系

    Figure  3.  Relationship between the conduction ratio of hydrogen thyratron and the heating voltage at two kinds of trigger pulses and different anode voltages

    图  4  氢闸流管导通时延示意图

    Figure  4.  Schematic of the turn-on delay of hydrogen thyratron

    图  5  两种型号TDI氢闸流管的导通时延随加热电压的变化关系

    Figure  5.  Relationship between on-time delay and heating voltage of two types of TDI hydrogen thyratrons

    图  6  两种型号TDI氢闸流管的导通时延随阳极电压的变化关系

    Figure  6.  Relationship between on-time delay and anode voltage of two types of TDI hydrogen thyratrons

    图  7  出现自放电现象的阳极电压随加热电压的变化关系

    Figure  7.  Relationship between anode voltage and heating voltage in which self-discharge occurs

    图  8  对TDI4-100k/150H型氢闸流管均压处理示意图

    Figure  8.  Schematic diagram of potential equalization treatment for TDI4-100K /150H type hydrogen thyratron

    图  9  均压处理前后的电压分布对比图

    Figure  9.  Comparison of voltage distribution before and after potential equalization

    图  10  均压前后出现自放电现象的阳极电压随加热电压的变化关系

    Figure  10.  Relationship between anode voltage and heating voltage in which self-excitation occurs before and after potential equalization

    图  11  均压前后出现导通时延与温度的关系对比

    Figure  11.  Comparison of the relationship between on-time delay and temperature before and after potential equalization

  • [1] 詹伟国. 浅谈加速器中的氢闸流管[J]. 医疗装备, 2003, 16(12):47 doi: 10.3969/j.issn.1002-2376.2003.12.032

    Zhan Weiguo. An introduction to hydrogen thyratron in accelerators[J]. Chinese Journal of Medical Device, 2003, 16(12): 47 doi: 10.3969/j.issn.1002-2376.2003.12.032
    [2] 潘传红. 磁约束核聚变能源开发的进展和展望[J]. 核科学与工程, 2000, 20(3):244-247,288 doi: 10.3321/j.issn:0258-0918.2000.03.009

    Pan Chuanhong. Progress and prospects for energy development by magnetic confinement fusion[J]. Chinese Journal of Nuclear Science And Engineering, 2000, 20(3): 244-247,288 doi: 10.3321/j.issn:0258-0918.2000.03.009
    [3] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15 doi: 10.3788/HPLPB20122401.0010

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010
    [4] Baba H, Satoh K, Miura A, et al. Development of 700 pps high-duty-cycle line-type pulse modulator[C]//Proceedings of the LINAC. 1996.
    [5] 孙文博, 吴云峰, 吴华君, 等. 基于氢闸流管的高压脉冲电源[J]. 电源技术, 2012, 36(5):696-698 doi: 10.3969/j.issn.1002-087X.2012.05.026

    Sun Wenbo, Wu Yunfeng, Wu Huajun, et al. A new high-voltage pulse power supply based on hydrogen thyratron[J]. Chinese Journal of Power Sources, 2012, 36(5): 696-698 doi: 10.3969/j.issn.1002-087X.2012.05.026
    [6] 赵阳. HFRC-F高压脉冲电源系统的研制与测试[D]. 武汉: 华中科技大学, 2021

    Zhao Yang. Development and test of high voltage pulse power supply for HFRC-F[D]. Wuhan: Huazhong University of Science and Technology, 2021
    [7] 肖嘉鹏. 场反等离子体形成研究装置设计[D]. 武汉: 华中科技大学, 2020

    Xiao Jiapeng. Design of field reversed configuration plasma formation research device[D]. Wuhan: Huazhong University of Science and Technology, 2020
    [8] 张义雄. HFRC磁压缩场反等离子体装置的压缩区设计[D]. 武汉: 华中科技大学, 2020

    Zhang Yixiong. Design of the compression area for a magnetic compression based field reversed configuration plasma device[D]. Wuhan: Huazhong University of Science and Technology, 2020
    [9] 吴辉, 吴建强, 郭兴宽. 一种新型的氢闸流管HY3202触发系统的研制[J]. 强激光与粒子束, 2002, 14(4):617-620

    Wu Hui, Wu Jianqiang, Guo Xingkuan. Trigger system development of a new type thyratron HY3202[J]. High Power Laser and Particle Beams, 2002, 14(4): 617-620
    [10] 郝晓敏, 唐丹, 陈敏德, 等. 低抖动纳秒级前沿的氢闸流管高压脉冲源[J]. 强激光与粒子束, 2004, 16(2):265-268

    Hao Xiaomin, Tang Dan, Chen Minde, et al. A low jitter, nanosecond risetime and high voltage pulse generator based on hydrogen thyratron[J]. High Power Laser and Particle Beams, 2004, 16(2): 265-268
    [11] 李海波, 齐欣, 张文庆, 等. CSNS的kicker电源闸流管触发特性分析[J]. 强激光与粒子束, 2021, 33(10):105003 doi: 10.11884/HPLPB202133.210170

    Li Haibo, Qi Xin, Zhang Wenqing, et al. Thyratron trigger characteristics analysis of CSNS kicker power supply[J]. High Power Laser and Particle Beams, 2021, 33(10): 105003 doi: 10.11884/HPLPB202133.210170
    [12] 周亮. 脉冲氢闸流管中电场分布和等离子体扩散分布[D]. 成都: 电子科技大学, 2012

    Zhou Liang. Electric field distribution and plasma diffusion distribution in pulsed hydrogen gate tubes[D]. Chengdu: University of Electronic Science and Technology of China, 2012
    [13] 冯文荃, 肖林. 氢闸流管放电猝熄实验现象[J]. 强激光与粒子束, 2000, 12(1):115-118

    Feng Wenquan, Xiao Lin. Experimental phenomena of the quenching of hydrogen thyratron discharges[J]. High Power Laser and Particle Beams, 2000, 12(1): 115-118
    [14] 毛凤麟, 王雪松. 复合绝缘子均压环对电场分布的影响[J]. 高电压技术, 2000, 26(4):40-42 doi: 10.3969/j.issn.1003-6520.2000.04.016

    Mao Fenglin, Wang Xuesong. Effects of grading ring of polymer insulator on the field distribution[J]. High Voltage Engineering, 2000, 26(4): 40-42 doi: 10.3969/j.issn.1003-6520.2000.04.016
    [15] 张强, 王维庆, 李长凯. 均压环对改善复合绝缘子的电场分布影响[J]. 电瓷避雷器, 2010(4):26-29

    Zhang Qiang, Wang Weiqing, Li Changkai. Effect of grading rings for improving the electric field distribution of composite insulators[J]. Insulators and Surge Arresters, 2010(4): 26-29
    [16] 方春华, 丰盛, 周雨秋. 复合绝缘子内部缺陷对电场分布特性的影响[J]. 绝缘材料, 2019, 52(4):37-44

    Fang Chunhua, Feng Sheng, Zhou Yuqiu. Influence of composite insulator internal defects on electric field distribution[J]. Insulating Materials, 2019, 52(4): 37-44
  • 加载中
图(11)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  53
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-03-14
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-03-21
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回