Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron
-
摘要: 磁控管高效互耦锁相为基于电真空振荡器的高效率、高功率阵列提供了一种有效的技术方案。互耦结构的引入使得互耦磁控管整体上建立了新的谐振模式序列,其中满足互耦磁控管高效锁相的模式为期望的锁相模式。然而,锁相模式易受到模式序列中邻近模式的干扰,导致工作不稳定。提出一种等效电路与本征模分析相结合调控模式分布的方法,通过调控模式频率分隔,使锁相模式单模工作;同时建立磁控管工作模式与互耦结构耦合场匹配的谐振条件,实现磁控管的高效互耦锁相。为了验证该方法的有效性,设计了基于S波段MW级磁控管高效互耦模型,对锁相模式工作特性进行了粒子模拟,模拟结果表明互耦模型可以稳定工作在高效锁相模式:0相位差模式和π相位差模式,锁定频率约为2.545 GHz,接近磁控管单管自由振荡频率。每只磁控管的输出功率接近单管自由运行时的输出功率,电子效率与单管几乎相同,互耦锁相效率达到了99%,实现了高效锁相。Abstract: The high-efficiency mutual coupling phase locking of magnetron provides an effective technical solution for high-efficiency and high-power arrays based on electric vacuum oscillators. The introduction of the mutual coupling structure makes the mutual coupling magnetron establish a new resonant mode sequence, in which the mode satisfying the high-efficiency phase-locking of the mutual coupling magnetron is the desired phase-locking mode. However, the phase-locked mode is susceptible to the interference of adjacent modes in the mode sequence, resulting in unstable operation. In this paper, a method of regulating the mode distribution by combining the equivalent circuit with the eigenmode analysis is proposed. By regulating the frequency separation of the mode, the phase-locked mode can work in a single mode. At the same time, the matching resonance conditions of the magnetron working mode and the coupling field of the mutual coupling structure are established to realize efficient mutual coupling phase locking of the magnetron. To verify the effectiveness of the method, an efficient mutual coupling model based on S-band MW-level magnetron is designed, and the particle simulation of the phase-locked mode operating characteristics is carried out. The simulation results show that the mutual coupling model can work stably in the high-efficiency phase-locking modes: 0 phase difference mode and π phase difference mode. The locking frequency is about 2.545 GHz, which is close to the free oscillation frequency of the magnetron single tube. The output power of each magnetron is close to the output power of a single tube in free operation. The electronic efficiency is almost the same as that of a single tube, and the mutual coupling phase-locking efficiency reaches 99%, achieving high-efficiency phase-locking.
-
Key words:
- magnetron /
- phase-locking /
- mode competition /
- power synthesis /
- vacuum electronics
-
图 5
$ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $ /2时的π相位差模场分布图和$ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $ 时的0相位差模、π-模、π+模场分布图Figure 5. Electric field distributions of π phase difference mode at
$ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $ /2 and 0 phase difference mode, π- mode, π+ mode at$ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $ 表 1 不同α对应的频率分隔
Table 1. Frequency separation corresponding to different α
α flow/GHz flocking/GHz fhigh/GHz |flocking−flow|/GHz |flocking−fhigh|/GHz 0.7 2.443 2.573 − 0.130 − 1.0 2.340 2.545 2.755 0.205 0.210 1.1 2.315 2.542 2.731 0.227 0.189 1.3 − 2.515 2.630 − 0.115 -
[1] Trew R J. High-frequency solid-state electronic devices[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 638-649. doi: 10.1109/TED.2005.845862 [2] Andreev A D. Computer simulations of frequency- and phase-locking of cavity magnetrons[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(12): 1501-1518. doi: 10.1080/09205071.2018.1452636 [3] Chen Cheng, Huang Kama, Yang Yang. Microwave transmitting system based on four-way master-slave injection-locked magnetrons and horn arrays with suppressed sidelobes[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2416-2424. doi: 10.1109/TMTT.2018.2790924 [4] Zhou Hao, Hu Jijun, Shi Jun, et al. Cascaded relativistic magnetron with phase-locked multiport extraction[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4854-4859. doi: 10.1109/TED.2023.3294455 [5] Fu Wenjie, Yan Yang, Li Xiaoyun. Investigation of magnetron injection locking and cascaded locking by solid-state microwave power source[J] Journal of Microwave Power and Electromagnetic Energy, 2019, 53(3): 171-183. [6] Cruz E J, Hoff B W, Pengvanich P, et al. Experiments on peer-to-peer locking of magnetrons[J]. Applied Physics Letters, 2009, 95: 191503. doi: 10.1063/1.3262970 [7] Adler R. A study of locking phenomena in oscillators[J]. Proceedings of the IRE, 1946, 34(6): 351-357. doi: 10.1109/JRPROC.1946.229930 [8] Tahir I, Dexter A, Carter R. Frequency and phase modulation performance of an injection-locked CW magnetron[J]. IEEE Transactions on Electron Devices, 2006, 53(7): 1721-1729. doi: 10.1109/TED.2006.876268 [9] Chen Xiaojie, Yu Ze, Lin Hang, et al. Improvements in a 20-kW phase-locked magnetron by anode voltage ripple suppression[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1879-1885. doi: 10.1109/TPS.2019.2956868 [10] Liu Changjun, Huang Heping, Liu Zhengyu, et al. Experimental study on microwave power combining based on injection-locked 15-kW S-band continuous-wave magnetrons[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1291-1297. doi: 10.1109/TPS.2016.2565564 [11] Chen Xiaojie, Yang Bo, Shinohara N, et al. A high-efficiency microwave power combining system based on frequency-tuning injection-locked magnetrons[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4447-4452. doi: 10.1109/TED.2020.3013510 [12] Chen Xiaojie, Yang Bo, Shinohara N, et al. Low-noise dual-way magnetron power-combining system using an asymmetric H-plane tee and closed-loop phase compensation[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(4): 2267-2278. doi: 10.1109/TMTT.2021.3056550 [13] Yang Bo, Chu Jie, Mitani T, et al. High-power simultaneous wireless information and power transfer system based on an injection-locked magnetron phased array[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(12): 1327-1330. doi: 10.1109/LMWC.2021.3104832 [14] Huang Heping, Yang Bo, Shinohara N, et al. Coherent power combining of four-way injection-locked 5.8-GHz magnetrons based on a five-port hybrid waveguide combiner[J]. IEEE Transactions on Microwave Theory and Techniques, 2024. [15] 谢文楷, 刘盛纲. 微波毫米波功率合成中的锁频和锁相[J]. 电子与信息学报, 1994, 16(4):416-422Xie Wenkai, Liu Shenggang. Phase and frequency locking of microwave and millimeter wave power combining[J]. Journal of Electronics & Information Technology, 1994, 16(4): 416-422 [16] Cheng Renjie, Li Tianming, Wang Jiaoyin, et al. Multiport relativistic magnetron for phased array application[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1423-1428. doi: 10.1109/TED.2022.3144122 [17] Liu Jiayang, Zha Hao, Shi Jiaru, et al. First demonstration and performance of X-band high-power magnetron with parallel cathodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3960-3965. doi: 10.1109/TED.2022.3177390 [18] Liu Jiayang, Zha Hao, Shi Jiaru, et al. Power combining of dual X-band coaxial magnetrons based on peer-to-peer locking[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6518-6524. doi: 10.1109/TED.2021.3121225 [19] Benford J, Sze H, Woo W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969-971. doi: 10.1103/PhysRevLett.62.969 [20] Sze H, Smith R R, Benford J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235-241. doi: 10.1109/15.155835 [21] Levine J S, Aiello N, Benford J, et al. Design and operation of a module of phase-locked relativistic magnetrons[J]. Journal of Applied Physics, 1991, 70(5): 2838-2848. doi: 10.1063/1.349347 [22] Levine J S, Benford J, Sze H, et al. Strongly coupled relativistic magnetrons for phase-locked arrays[C]//Proceedings of the SPIE 1061, Microwave and Particle Beam Sources and Directed Energy Concepts. 1989. [23] Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563 [24] 王文祥. 微波工程技术[M]. 2版. 北京: 国防工业出版社, 2014Wang Wenxiang. Microwave engineering technology[M]. 2nd ed. Beijing: National Defense Industry Press, 2014 [25] 谢处方, 饶克谨, 杨显清, 等. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019Xie Chufang, Rao Kejin, Yang Xianqing, et al. Electromagnetic field and electromagnetic wave[M]. 5th ed. Beijing: Higher Education Press, 2019 [26] Slater J C. Microwave electronics[J]. Reviews of Modern Physics, 1946, 18(4): 441-512. doi: 10.1103/RevModPhys.18.441 [27] Slater J C. The phasing of magnetrons[M]. Cambridge, MA, RLE Tech. Rep. No. 35, 1947. [28] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频[J]. 物理学报, 2013, 62:178401 doi: 10.7498/aps.62.178401Yue Song, Zhang Zhaochuan, Gao Dongping. Injection-locking of magnetrons with matched impedance[J]. Acta Physica Sinica, 2013, 62: 178401 doi: 10.7498/aps.62.178401 -