Simulation and source design of large area uniform bremsstrahlung field
-
摘要: 基于蒙特卡罗方法建立了单环及双环平行电子束轰击钽靶模型,以此模拟环形二极管产生轫致辐射场的过程。模型选用电子束能量为1.5 MeV,钽金属靶厚度为200 μm,并采用探测器计数方法对单环电子束在靶后10 cm产生的轫致辐射场剂量进行模拟研究。对于单环二极管结构,环内径是影响靶后轫致辐射场均匀性的主要因素,内径越大,中心剂量均匀性越差。相比环内径,环宽则主要影响辐射场的剂量大小,对于均匀性的影响较小。当单环内径为19 cm、外径为20 cm时,能得到最大面积为
2 290.221 cm2的均匀辐射场。双环二极管结构对比单环结构能得到更大面积的均匀辐射场。但外环环径的变化会导致辐射场剂量分布出现多级峰值,同时对辐射场各个区域的均匀性造成影响。模拟结果表明,通过在上述单环结构外侧添加内径为43.5 cm、外径为44.167 cm的同心外环,可将满足均匀度要求的辐射场面积增大至7 238.229 cm2。Abstract: Bremsstrahlung diode is an important device for obtaining large area uniform bremsstrahlung field in laboratory. In this paper, based on Monte Carlo method, a model of single and double ring parallel electron beam bombarding tantalum target is established to simulate the process of bremsstrahlung field generated by ring diode. The electron beam energy is 1.5 MeV, the tantalum target thickness is 200 μm, and the dose of bremsstrahlung field generated by a single ring electron beam 10 cm behind the target is simulated by detector counting method. For single-ring diode structure, the inner diameter of the ring is the main factor affecting the bremsstrahlung field uniformity behind the target, and the larger the inner diameter, the worse the central dose uniformity. Compared with the inner diameter of the ring, the ring width mainly affects the dose of the radiation field, but has little influence on the uniformity. When the inner diameter of a single ring is 19 cm and the outer diameter is 20 cm, a uniform radiation field with a maximum area of2290.221 cm2 can be obtained. When the inner diameter of a single ring is 19 cm and the outer diameter is 20 cm, a uniform radiation field with a maximum area of2290.221 cm2 can be obtained. The double-loop diode structure can obtain a larger area of uniform radiation field than the single-loop structure. However, the variation of the outer ring diameter leads to multi-level peaks in the dose distribution of the radiation field, which also affects the homogeneity of each region of the radiation field. The simulation results show that by adding a concentric outer ring with an inner diameter of 43.5 cm and an outer diameter of 44.167 cm to the outside of the single ring structure, the radiation field area meeting the uniformity requirement can be increased to7238.229 cm2.-
Key words:
- X-ray /
- ring diode /
- bremsstrahlung /
- Monte Carlo method /
- homogeneity
-
表 1 不同内径对应次级凹陷处的均匀度大小
Table 1. Different inner diameters correspond to the uniformity of the secondary depression
r3/cm dose uniformity r3/cm dose uniformity 42 0.5454 43 0.5168 43.5 0.5019 44 0.4892 -
[1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005 [2] 张催, 张益海, 商宏杰, 等. X射线管原始谱和透射谱的测量及应用[J]. 原子能科学技术, 2016, 50(10):1859-1865 doi: 10.7538/yzk.2016.50.10.1859Zhang Cui, Zhang Yihai, Shang Hongjie, et al. Measurement and application of original spectrum and transmission spectrum of X-ray tube[J]. Atomic Energy Science and Technology, 2016, 50(10): 1859-1865 doi: 10.7538/yzk.2016.50.10.1859 [3] 杨强, 葛良全, 谷懿, 等. 微型X射线管靶材厚度理论计算与出射光谱模拟研究[J]. 光谱学与光谱分析, 2013, 33(4):1130-1134 doi: 10.3964/j.issn.1000-0593(2013)04-1130-05Yang Qiang, Ge Liangquan, Gu Yi, et al. Theoretical calculation and simulation research on micro X-ray tube target thickness and spectra[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1130-1134 doi: 10.3964/j.issn.1000-0593(2013)04-1130-05 [4] Salvat F, Fernández-Varea J M, Sempau J, et al. Monte Carlo simulation of bremsstrahlung emission by electrons[J]. Radiation Physics and Chemistry, 2006, 75(10): 1201-1219. doi: 10.1016/j.radphyschem.2005.05.008 [5] 刘锡三. 强流粒子束及其应用[M]. 北京: 国防工业出版社, 2007Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007 [6] 赖祖武. 抗辐射电子学[M]. 北京: 国防工业出版社, 1998Lai Zuwu. Radiation hardening electronics[M]. Beijing: National Defense Industry Press, 1998 [7] 何辉, 禹海军, 王毅, 等. 4 MeV闪光X光机轫致辐射靶设计[J]. 强激光与粒子束, 2019, 31:125102 doi: 10.11884/HPLPB201931.190273He Hui, Yu Haijun, Wang Yi, et al. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31: 125102 doi: 10.11884/HPLPB201931.190273 [8] 邱爱慈. 脉冲X射线模拟源技术的发展[J]. 中国工程科学, 2000, 2(9):24-28 doi: 10.3969/j.issn.1009-1742.2000.09.004Qiu Aici. The development of technology for pulsed X ray simulators[J]. Engineering Science, 2000, 2(9): 24-28 doi: 10.3969/j.issn.1009-1742.2000.09.004 [9] 邱爱慈, 吕敏. 闪光二号── 一台太瓦级脉冲电子束加速器及其应用[J]. 物理, 1995, 24(6):325-331Qiu Aici, Lü Min. Flash-Ⅱ, a TW pulsed electron beam accelerator and its application[J]. Physics, 1995, 24(6): 325-331 [10] 杨实, 任书庆, 丛培天, 等. “闪光二号”加速器适应性改造[J]. 强激光与粒子束, 2016, 28:015103 doi: 10.11884/HPLPB201628.015103Yang Shi, Ren Shuqing, Cong Pentian, et al. Transformation of the Flash-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2016, 28: 015103 doi: 10.11884/HPLPB201628.015103 [11] Bloomquist D D, Stinnett R W, Mcdaniel D H, et al. Saturn: a large area X-ray simulation accelerator[C]//Presented at the 6th Institute of Electrical and Electronic Engineers Pulsed Power Conference. 1987. [12] 李进玺, 吴伟, 刘逸飞, 等. 多路并联二极管辐射场剂量均匀性研究[J]. 辐射研究与辐射工艺学报, 2023, 41:050703Li Jinxi, Wu Wei, Liu Yifei, et al. Study on the dose uniformity of multi-channel parallel diode[J]. Journal of Radiation Research and Radiation Processing, 2023, 41: 050703 [13] 彭博, 黄宁, 王鹏, 等. 10~50 keV的X射线管轫致辐射能谱的解析计算[J]. 原子能科学技术, 2023, 57(6):1233-1242 doi: 10.7538/yzk.2022.youxian.0570Peng Bo, Huang Ning, Wang Peng, et al. Analytical calculation of bremsstrahlung spectrum for X-ray tube at 10-50 keV[J]. Atomic Energy Science and Technology, 2023, 57(6): 1233-1242 doi: 10.7538/yzk.2022.youxian.0570 [14] 钦佩, 唐斌, 傅玉川, 等. 低能电子轫致辐射的蒙特卡罗模拟[J]. 辐射研究与辐射工艺学报, 2009, 27(6):337-340 doi: 10.3969/j.issn.1000-3436.2009.06.004Qin Pei, Tang Bin, Fu Yuchuan, et al. Monte Carlo simulation on the bremsstrahlung of low energy electrons[J]. Journal of Radiation Research and Radiation Processing, 2009, 27(6): 337-340 doi: 10.3969/j.issn.1000-3436.2009.06.004 [15] 蒯斌, 邱爱慈, 王亮平, 等. 强脉冲超硬X射线产生技术研究[J]. 强激光与粒子束, 2005, 17(11):1739-1743Kuai Bin, Qiu Aici, Wang Liangping, et al. Generation of intense pulsed super-hard X-ray[J]. High Power Laser and Particle Beams, 2005, 17(11): 1739-1743 [16] 钟甜城. 耦合磁绝缘传输线的大面积轫致辐射二极管设计[D]. 北京: 中国工程物理研究院, 2017Zhong Tiancheng. Design of large area-bremsstrahlung diode coupled with MITL[D]. Beijing: China Academy of Engineering Physics, 2017 [17] 邵文成, 孙普男, 代文江. 高能电子在加速器靶物质中射程的数值模拟[J]. 原子能科学技术, 2008, 42(11):992-996 doi: 10.7538/yzk.2008.42.11.0992Shao Wencheng, Sun Punan, Dai Wenjiang. Numerical simulation on range of high-energy electron moving in accelerator target[J]. Atomic Energy Science and Technology, 2008, 42(11): 992-996 doi: 10.7538/yzk.2008.42.11.0992 [18] 魏熙晔, 李泉凤, 严慧勇. 高能电子束轫致辐射特性的理论研究[J]. 物理学报, 2009, 58(4):2313-2319 doi: 10.3321/j.issn:1000-3290.2009.04.030Wei Xiye, Li Quanfang, Yan Huiyong. Theoretical study on bremsstrahlung of high energy electrons[J]. Acta Physica Sinica, 2009, 58(4): 2313-2319 doi: 10.3321/j.issn:1000-3290.2009.04.030 [19] Metropolis N, Ulam S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341. doi: 10.1080/01621459.1949.10483310 [20] Adekitan A I. Monte Carlo analysis/simulation[D]. Ibadan: Ibadan University of Technology, 2014. [21] Fisher I Z. Applications of the Monte Carlo method in statistical physics[J]. Soviet Physics Uspekhi, 1960, 2: 783. [22] Sanford T W L, Mock R C. An intense large-volume uniform source of bremsstrahlung for pulsed gamma ray simulation[J]. IEEE Transactions on Nuclear Science, 1992, 39(6): 2060-2069. doi: 10.1109/23.211404