Research on theoretical model of bulk current injection replacing radiation about shielded two-core wire
-
摘要: 针对大范围空间模拟强场电磁环境进行辐射效应试验难度大以及现有大电流注入(BCI)技术应用于非线性系统试验存在空白的问题,开展了屏蔽线耦合通道BCI等效替代辐照试验方法研究。以受试设备响应相等作为等效依据,建立了辐照法和注入法两种条件下受试设备响应的分析模型,推导出了注入激励源电压与辐照场强之间的等效对应关系,提出了BCI等效替代辐照的条件和试验方法,并进行了试验验证。研究结果表明,BCI方法是可以精确等效受试设备的辐照效应试验,试验误差不超过2 dB,能够满足工程的实际需求。Abstract: Large-scale space simulation of high field intensity electromagnetic environment is difficult to test radiation effects, and there are gaps in the application of existing BCI (bulk current injection) technology to nonlinear system tests. The research on the equivalent alternative radiation test method of the shielded cable coupling channel is carried out. Taking the equal response of the tested equipment as the equivalent basis, an analysis model of the response of the EUT (equipment under test) under the two conditions of radiation method and injection method is established. The equivalent corresponding relationship between the injection excitation source voltage and the radiation field intensity is deduced, and the conditions and test methods for the equivalent replacement of radiation with BCI are proposed and verified by experiments. The research results show that the BCI method can be accurately equivalent to the radiation effect test of the EUT, and the test error does not exceed 2 dB, which can meet the actual needs of the project.
-
表 1 实验结果
Table 1. Results of tests
frequency/MHz P1/dBm P2/dBm E0/(V/m) k P3/dBm P4/dBm E1/(V/m) 69 28.5 26.7 4.2 −14.2 47.8 46 35.2 70 29.2 28.8 4.3 −16.1 48 47.4 34.9 110 31.3 20.5 4.7 −7.1 57.8 48.6 97.8 170 37.4 22.8 21.5 3.85 56.3 42.4 188.8 370 36.6 16.1 4.7 −2.7 48.6 29.3 20.8 390 34.2 18.7 4.1 −6.4 45.7 30.7 17.4 表 2 实验误差
Table 2. Errors of tests
frequency /MHz error/dB 69 −0.76 70 −0.42 110 −1.77 170 −0.73 370 −0.30 390 0.56 -
[1] MIL-STD-464C, Electromagnetic environment effects requirements for systems[S]. 2010. [2] 潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应实验方法[J]. 电波科学学报, 2017, 32(2):151-160. (Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Test method of using differential mode injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32(2): 151-160 [3] 杨茂松, 孙永卫, 潘晓东, 等. 双绞线BCI等效替代强场电磁辐射实验研究[J]. 微波学报, 2018, 34(6):72-77. (Yang Maosong, Sun Yongwei, Pan Xiaodong, et al. Testing technology of using twisted pair cable BCI as substitution for high field continuous wave EM radiation[J]. Journal of Microwaves, 2018, 34(6): 72-77 [4] 杨茂松, 孙永卫, 潘晓东, 等. 平行双线BCI等效替代强场连续波电磁辐射实验研究[J]. 强激光与粒子束, 2018:093201. (Yang Maosong, Sun Yongwei, Pan Xiaodong, et al. Testing technology of using bulk current injection with parallel double line as substitute for high field continuous wave electromagnetic radiation[J]. High Power Laser and Particle Beams, 2018: 093201 doi: 10.11884/HPLPB201830.180078 [5] 魏光辉, 卢新福, 潘晓东, 等. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42(5):1347-1355. (Wei Guanghui, Lu Xinfu, Pan Xiaodong, et al. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42(5): 1347-1355 [6] 潘晓东, 魏光辉, 卢新福, 等. 电磁注入等效替代辐照理论模型及实现技术[J]. 高电压技术, 2012, 38(9):2293-2301. (Pan Xiaodong, Wei Guanghui, Lu Xinfu et al. Theoretical model and implementation technique of using injection as a substitute for radiation[J]. High Voltage Engineering, 2012, 38(9): 2293-2301 [7] Tesche F M, Ianoz M, Karlsson T, 吕英华, 等. EMC analysis methods and computational models[M]. 北京: 北京邮电大学出版社, 2009.Tesche F M, Ianoz M, Karlsson T, Lv Yinghua, et al. EMC Analysis methods and computational models[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2009 [8] Flavia G, Sergio A P. Immunity to conducted noise of data transmission along DC power lines involving twisted-wire pairs above ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(1): 195-207. doi: 10.1109/TEMC.2012.2208117 [9] Clayton R P. Decoupling the multiconductor transmission line equations[J]. IEEE Transactions on Microwave Theory and Technology, 1996, 44(8): 1429-1440. doi: 10.1109/22.536026 [10] Flavia G, Filippo M, Sergio A P. Circuit modeling of injection probes for bulk current injection[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3): 563-576. doi: 10.1109/TEMC.2007.902385 [11] Flavia G, Sergio A P. Bulk current injection in twisted wires pairs with not perfectly balanced terminations[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1293-1301. doi: 10.1109/TEMC.2013.2255295 [12] Flavia G, Giordano S, Sergio A P. The concept of weak imbalance and its role in the emissions and immunity of differential lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1346-1349. doi: 10.1109/TEMC.2013.2261302 [13] Sergio P, Flavio G C. Theoretical assessment of bulk current injection versus radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 469-477. doi: 10.1109/15.536077 [14] Flavia G. Accurate modeling of ferrite-core effects in probes for bulk current injection[C]//IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems. 2009. [15] Flavia G, Giordano S, Filippo M, et al. Use of double bulk current injection for susceptibility testing of avionics[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(3): 524-535. doi: 10.1109/TEMC.2008.926810 -