Research on optimization of MW level neutral beam injection arc power supply system
-
摘要: 中性束注入弧电源的性能严重影响弧放电的稳定性和中性束加热的效率。HL-2A装置弧电源采用基于晶闸管相控调压和12脉波不控整流的线性电源技术;HL-2M测试束线弧电源采用基于超级电容和IGBT全控整流的开关电源技术。为了优化电源系统性能、改进弧放电稳定性,研究了采样频率对弧放电稳定性的影响。通过对两套电源控制系统进行建模,利用MATLAB仿真了不同采样频率下HL-2M弧流电源控制系统的阶跃响应性能和HL-2A的控制系统性能,分析了采样频率对系统性能的影响。利用离子源测试平台进行不同采样频率下的弧放电实验对仿真结果进行验证,实验结果与仿真结果一致。实验结果验证:采样频率对弧放电稳定性有很大影响,在频率可调范围内,增大采样频率,可以提高控制系统性能,优化弧放电稳定性;HL-2A弧放电不稳定的原因是晶闸管导通特性和滤波电路引起的。Abstract: The performance of the neutral beam injection arc power supply seriously affects the stability of the arc discharge and the efficiency of the neutral beam heating. HL-2A device arc power supply adopts linear power supply technology based on thyristor phase-controlled voltage regulation and 12-pulse uncontrolled rectification; HL-2M test beam line device arc power supply adopts switching power supply technology based on super capacitor and IGBT full-controlled rectification. To optimize the performance of the power system, improve the arc discharge stability, the influence of sampling frequency on the stability of arc discharge is studied. By modeling the HL-2A and HL-2M power supply control systems, MATLAB is used to simulate the step response performance of the HL-2M arc current power supply control system and the HL-2A control system performance under different sampling frequencies, and analyze the impact of the sampling frequency on the system performance. Then, the ion source test platform is used to conduct arc discharge experiments at different sampling frequencies to verify the simulation results, and the experimental results are consistent with the simulation results. It is verified by experiments that the sampling frequency has great influence on the stability of arc discharge, while in the frequency adjustable range, increasing the sampling frequency can improve the performance of the control system and optimize the stability of arc discharge; the reason for the unstable arc discharge of HL-2A is the conduction characteristics of the thyristor and the filter circuit.
-
Key words:
- neutral beam injection /
- HL-2A /
- HL-2M /
- arc power supply /
- control system /
- sampling frequency
-
表 1 不同频率下弧电源各项参数对比
Table 1. Comparison of various parameters of arc power supply at different frequencies
sampling frequency/kHz actual holing time/ms rise time/ms adjust time/ms current overshoot/A current ripple/A 0.3 11.9 6.9 14.7 59.7 46.8 10 6.2 1.3 6.1 60.8 29.2 100 5.4 0.25 1.0 52.8 29.5 -
[1] 陈文光, 饶军, 李波, 等. HL-2A MW级中性束注入系统弧流电源设计[J]. 原子能科学技术, 2011, 45(3):379-384. (Chen Wenguang, Rao Jun, Li Bo, et al. Technical design of arc power supply for MW neutral beam injection system on HL-2A Tokamak[J]. Atomic Energy Science and Technology, 2011, 45(3): 379-384 [2] Chen Wenguang, Rao Jun, Li Bo, et al. Technical design of arc-discharge and deceleration power supply for MW level NBI system on HL-2A tokamak[J]. Plasma Science & Technology, 2012(10): 82-86. [3] 阳璞琼, 宣伟民, 张莹, 等. 5 MW中性束弧电源DC/DC变换器的设计与实现[J]. 强激光与粒子束, 2015, 27:084003. (Yang Puqiong, Xuan Weimin, Zhang Ying, et al. Design and implementation of 5 MW neutral beam injection arc power supply DC/DC converter[J]. High Power Laser and Particle Beams, 2015, 27: 084003 doi: 10.11884/HPLPB201527.084003 [4] 成继东, 魏会领, 余珮炫, 等. HL-2A装置MW级中性束加热系统灯丝电源设计与仿真分析[J]. 核聚变与等离子体物理, 2019, 39(3):227-231. (Cheng Jidong, Wei Huiling, Yu Peixuan, et al. Design and simulation analysis of filament power supply for MW neutral beam heating system of HL-2A tokamak[J]. Nuclear Fusion and Plasma Physics, 2019, 39(3): 227-231 [5] 阳璞琼, 宣伟民, 曹建勇, 等. 基于超级电容储能的中性束注入系统弧电源设计[J]. 原子能科学技术, 2015, 49(1):166-170. (Yang Puqiong, Xuan Weimin, Cao Jianyong, et al. Design of arc power supply for neutral beam injection system based on super capacitor energy storage[J]. Atomic Energy Science and Technology, 2015, 49(1): 166-170 doi: 10.7538/yzk.2015.49.01.0166 [6] Lee H J, Shin S C, Won C Y, et al. The control and design of a arc power supply for the neutral beam injection[C]//Conference of the IEEE Industrial Electronics Society. 2011. [7] 尚霄. 基于DSP+FPGA的数字伺服控制器的设计[J]. 科学咨询(科技·管理), 2019(10):52-53. (Shang Xiao. Design of a digital servo controller based on DSP+FPGA[J]. Scientific Consulting (Technology·Management), 2019(10): 52-53 [8] 王俊. 基于DSP+FPGA的高精度程控交流电源设计[J]. 电力电子技术, 2012, 46(4):18-20. (Wang Jun. Design of a high precision programmable AC power source based on DSP+FPGA Device[J]. Power Electronics Technology, 2012, 46(4): 18-20 doi: 10.3969/j.issn.1000-100X.2012.04.007 [9] 周航汛, 熊显名, 张文涛, 等. 高采样频率位移测量系统硬件架构设计[J]. 现代电子技术, 2020, 43(22):10-14. (Zhou Hangxun, Xiong Xianming, Zhang Wentao, et al. Design of hardware architecture of displacement measurement system with high sampling frequency[J]. Modern Electronic Technology, 2020, 43(22): 10-14 [10] Park H Y, Jo Y H, Park K B. The ultimate bound of discrete sliding mode control system with short sampling period for DC motor system[J]. Journal of Institute of Control Robotics & Systems, 2010, 16(3): 245-248. [11] 孙绍凯, 管心盼, 张棣. 采样周期对控制系统性能的影响[J]. 黑龙江电子技术, 1998(6):25-27. (Sun Shaokai, Guan Xinpan, Zhang Di. The influence of sampling period on the performance of control system[J]. Heilongjiang Electronic Technology, 1998(6): 25-27 [12] 李松平, 龚学余, 阳璞琼, 等. 兆瓦级NBI加热系统弧流电源故障诊断方法探究[J]. 核聚变与等离子体物理, 2020, 40(2):174-181. (Li Songping, Gong Xueyu, Yang Puqiong, et al. New advances in fault diagnosis method of arc power supply for MW neutral beam injector heating system[J]. Nuclear Fusion and Plasma Physics, 2020, 40(2): 174-181 [13] 魏会领, 曹建勇, 余珮炫, 等. HL-2M装置5 MW中性束加热束线离子源放电室研制[J]. 强激光与粒子束, 2020, 32:046001. (Wei Huiling, Cao Jianyong, Yu Peixuan, et al. Development of HL-2M device 5 MW neutral beam heating beam line ion source discharge chamber[J]. High Power Laser and Particle Beams, 2020, 32: 046001 [14] 王忆. 关于计算机控制系统中采样周期的确定[J]. 信息与电脑(理论版), 2014(10):214-215. (Wang Yi. On the determination of the sampling period in the computer control system[J]. Information and Computer (Theoretical Edition), 2014(10): 214-215 [15] Lee H J, Shin S C, Lee S G, et al. The design and implementation of arc power supply for neutral beam injection[J]. Nature Neuroscience, 2013, 27(6): 1463-71. [16] 张凤雪, 阳春华, 周晓君, 等. 基于控制周期计算的锌液净化除铜过程优化控制[J]. 控制理论与应用, 2017, 34(10):1388-1395. (Zhang Fengxue, Yang Chunhua, Zhou Xiaojun, et al. Optimal control based on control period calculation for copper removal process of zinc solution purification[J]. Control Theory and Application, 2017, 34(10): 1388-1395 doi: 10.7641/CTA.2017.60621 [17] 张元敏, 方如举. 利用状态平均法对DC/DC变换电路的分析[J]. 电力自动化设备, 2008, 28(4):50-52. (Zhang Yuanmin, Fang Ruju. Analysis of DC/DC conversion circuit using state average method[J]. Electric Power Automation Equipment, 2008, 28(4): 50-52 doi: 10.3969/j.issn.1006-6047.2008.04.012 [18] 郭庆, 蒋丹, 李辉. MATLAB SISO工具箱在机电控制技术实践教学中的应用[J]. 实验科学与技术, 2018, 16(2):65-69. (Guo Qing, Jiang Dan, Li Hui. Application of MATLAB SISO tool in praxis teaching of mechatronics control technology[J]. Experiment Science and Technology, 2018, 16(2): 65-69 doi: 10.3969/j.issn.1672-4550.2018.02.014 [19] 李昌春, 左为恒, 左焜. 智能控制与传统控制效果的仿真研究[J]. 兵工自动化, 2001(2):19-21. (Li Changchun, Zuo Weiheng, Zuo Kun. Research on the simulation of effects for intelligent control and traditional control[J]. Ordnance Industry Automation, 2001(2): 19-21 doi: 10.3969/j.issn.1006-1576.2001.02.006 [20] 黄璐, 文军, 姜杰. 电动舵机系统建模与仿真研究[J]. 自动化与仪器仪表, 2020(12):237-239, 244. (Huang Lu, Wen Jun, Jiang Jie. Research on modeling and simulation of electric servo system[J]. Automation and Instrumentation, 2020(12): 237-239, 244 [21] 谢妮慧, 王淳, 林喆. 遥感机构数字伺服控制系统采样周期的确定[J]. 电子测量技术, 2017, 40(7):165-169. (Xie Nihui, Wang Chun, Lin Zhe. Determination of the sampling period of the digital servo control system of remote sensing mechanism[J]. Electronic Measurement Technology, 2017, 40(7): 165-169 doi: 10.3969/j.issn.1002-7300.2017.07.036 [22] 李家羊, 岑韬, 张磊, 等. 提高柔性直流输电换流阀阀控系统性能的方法研究[J]. 电气技术, 2017(12):152-156. (Li Jiayang, Cen Tao, Zhang Lei, et al. Research on improving valve control system performance of converter valve for VSC-HVDC[J]. Electrical Technology, 2017(12): 152-156 doi: 10.3969/j.issn.1673-3800.2017.12.033 -