留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西安理工大学无线光通信系统自适应光学技术研究进展

柯熙政 杨尚君 吴加丽 钟禧瑞

柯熙政, 杨尚君, 吴加丽, 等. 西安理工大学无线光通信系统自适应光学技术研究进展[J]. 强激光与粒子束, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167
引用本文: 柯熙政, 杨尚君, 吴加丽, 等. 西安理工大学无线光通信系统自适应光学技术研究进展[J]. 强激光与粒子束, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167
Ke Xizheng, Yang Shangjun, Wu Jiali, et al. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167
Citation: Ke Xizheng, Yang Shangjun, Wu Jiali, et al. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33: 081003. doi: 10.11884/HPLPB202133.210167

西安理工大学无线光通信系统自适应光学技术研究进展

doi: 10.11884/HPLPB202133.210167
基金项目: 陕西省科研计划项目(18JK0341);陕西省重点产业创新项目(2017ZDCXL-GY-06-01);西安市科技计划项目(2020KJRC0083)
详细信息
    作者简介:

    柯熙政(1962—),男,教授,博士生导师,主要从事无线光通信方面的研究

    通讯作者:

    杨尚君(1991—),男,博士研究生,主要从事无线光通信方面的研究

  • 中图分类号: TN929.1

Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology

  • 摘要:

    总结了国内外自适应光学技术在无线光通信系统应用中的研究进展和技术分类,同时介绍了西安理工大学在该领域的工作,包括有波前测量的自适应光学系统、无波前测量的自适应光学系统、液晶空间光调制器波前校正、偏摆镜和变形镜组合的波前校正、空间光光纤耦合自适应光学波前校正等。自适应光学技术可有效修正无线光通信系统中由大气湍流引起的畸变波前,提高耦合效率和通信性能。虽然这些方法在理论分析和工程实际中尚不完善,但不失为人们在该领域进行的有益探索。

  • 图  1  西安理工大学无线光通信100 km实验链路图

    Figure  1.  Diagram of 100 km of Xi’an University of Technology wireless optical communication experimental link

    图  2  无线相干光通信内部结构实物图

    Figure  2.  Photo of internal structure of wireless coherent optical communication

    图  3  自适应光学研究内容结构图

    Figure  3.  Structure of adaptive optics research content

    图  4  自适应光学系统原理图

    Figure  4.  Schematic diagram of adaptive optics system

    图  5  有波前自适应光学系统结构图

    Figure  5.  Structure diagram of adaptive optics system with wavefront

    图  6  推拉法第10个驱动器驱动下(a)变形镜面形图(b)波前斜率图

    Figure  6.  Push-pull method driving the 10th driver (a) deformable mirror shape diagram (b) wavefront slope diagram

    图  7  响应矩阵

    Figure  7.  Interaction matrices

    图  8  自适应光学PID控制算法原理图

    Figure  8.  Schematic diagram of adaptive optics PID control algorithm

    图  9  不同kp参数下波前校正[96]

    Figure  9.  Wavefront correction under different kp parameters[96]

    图  10  不同ki参数下波前校正[96]

    Figure  10.  Wavefront correction under different ki parameters[96]

    图  11  不同收敛值δ校正后波前相位[96]

    Figure  11.  Different convergence values δ corrected wavefront phase[96]

    图  12  不同γ值校正波前相位[96]

    Figure  12.  Different γ value corrected wavefront phase[96]

    图  13  不同β校正后系统波前相位[96]

    Figure  13.  Different β corrected system wavefront phase[96]

    图  14  模糊控制校正波前PV曲线[100]

    Figure  14.  PV curve of wavefront corrected by fuzzy control[100]

    图  15  自适应光学波前预测校正

    Figure  15.  Adaptive optics wavefront prediction and correction

    图  16  无波前自适应光学系统图

    Figure  16.  Wavefrontless adaptive optics system

    图  17  变形镜本征模式校正光强SR变化曲线[107]

    Figure  17.  Deformable mirror eigen mode corrected light intensity SR change curve[107]

    图  18  波前校正前后光斑图[107]

    Figure  18.  Light spot by wavefront correction[107]

    图  19  基于SPGD算法波前校正[114]

    Figure  19.  Wavefront correction based on SPGD algorithm[114]

    图  20  无波前校正法光纤耦合校正曲线[115]

    Figure  20.  Optimal optical fiber coupling correction curve after wavefrontless correction[115]

    图  21  各阶次涡旋光束利用相位恢复Gerchberg-Saxton法校正前后光强分布图[117](a1)~(d1)无湍流;(a2)~(d2)有湍流;(a3)~(d3)校正后

    Figure  21.  Intensity distribution of vortex beams before and after correction by phase recovery Gerchberg-Saxton algorithm[117](a1)~(d1) no turbulence, (a2)~(d2) has turbulence, (a3)~(d3) correction

    图  22  相位差法校正单个涡旋光束的光强分布图[119](a1)~(c1)初始光强;(a2)~(c2)焦面处光强;(a3)~(c3)离焦面处光强;(a4)~(c4)校正后光强

    Figure  22.  Intensity distribution of single vortex beam corrected by phase difference method[119](a1)~(c1) initial light intensity, (a2)~(c2) the light intensity at the focal plane, (a3)~(c3) intensity at defocus plane, (a4)~(c4) corrected light intensity

    图  23  无线相干光通信系统LC-SLM波前校正示意图[120]

    Figure  23.  Schematic diagram of LC-SLM wavefront correction in wireless coherent optical communication system[120]

    图  24  校正前后中频信号幅值[122]

    Figure  24.  Amplitude of immediate frequency signal before and after correction[122]

    图  25  多校正器波前校正PV收敛曲线

    Figure  25.  PV convergence curve of multi-corrector wavefront correction

    图  26  基于TM和DM组合的自适应光学系统波前相位

    Figure  26.  Wavefront phase of adaptive optics system based on TM and DM combination

    图  27  加算法时电压变化[127]

    Figure  27.  Voltage change while using simulated annealing algorithm[127]

    图  28  引入不同偏差下耦合光功率随迭代次数变化曲线[128]

    Figure  28.  Variation curve of coupling optical power with iteration times under different deviations[128]

    图  29  模式转换结果[131]

    Figure  29.  Mode conversion results[131]

    图  30  自适应光学波前校正光纤耦合控制系统示意图

    Figure  30.  Schematic diagram of adaptive optics wavefront correction optical fiber coupling control system

    图  31  非共光路像差对自适应光学闭环耦合功率以及波前相位的影响

    Figure  31.  Effect of non-common optical path aberration on closed-loop coupling power and wavefront phase of adaptive optics

    图  32  自适应光学波前校正前后光纤耦合功率变化曲线

    Figure  32.  Variation curve of fiber coupling power before and after adaptive optics wavefront correction

    图  33  不同距离情况下波前修正对于耦合效率影响的曲线

    Figure  33.  Effect curve of wavefront correction on coupling efficiency at different distances

  • [1] 饶长辉, 姜文汉. 自适应光学系统对大气湍流补偿的有效性分析[J]. 强激光与粒子束, 1996, 8(4):469-475. (Rao Changhui, Jiang Wenhan. Effectiveness analysis of adaptive optics system compensating atmosphere turbulence[J]. High Power Laser and Particle Beams, 1996, 8(4): 469-475
    [2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
    [3] 胡立发, 刘超, 申文, 等. 自适应光学技术在天文观测中的研究进展[J]. 中国科学: 物理学 力学 天文学, 2017, 47:084202. (Hu Lifa, Liu Chao, Shen Wen, et al. Advancement of adaptive optics in astronomical observation[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47: 084202
    [4] 张雨东, 姜文汉, 史国华, 等. 自适应光学的眼科学应用[J]. 中国科学 G辑: 物理学 力学 天文学, 2007, 37(s1):68-74. (Zhang Yudong, Jiang Wenhan, Shi Guohua, et al. Ophthalmological applications of adaptive optics[J]. Science in China (Series G: Physics, Mechanics & Astronomy), 2007, 37(s1): 68-74
    [5] 姜文汉, 杨泽平, 官春林, 等. 自适应光学技术在惯性约束聚变领域应用的新进展[J]. 中国激光, 2009, 36(7):1625-1634. (Jiang Wenhan, Yang Zeping, Guan Chunlin, et al. New progress on adaptive optics in inertial confinement fusion facility[J]. Chinese Journal of Lasers, 2009, 36(7): 1625-1634 doi: 10.3788/CJL20093607.1625
    [6] 杨慧珍, 李新阳, 姜文汉. 自适应光学技术在大气光通信系统中的应用进展[J]. 激光与光电子学进展, 2007, 44(1):61-68. (Yang Huizhen, Li Xinyang, Jiang Wenhan. Applications of adaptive optics technology in atmospheric laser communications system[J]. Laser & Optoelectronics Progress, 2007, 44(1): 61-68
    [7] Fried D L. Adaptive optics topical issue[J]. Journal of the Optical Society of America A, 1977, 67: 422. doi: 10.1364/JOSA.67.000422
    [8] Tyson R K. Adaptive optics and ground-to-space laser communications[J]. Applied Optics, 1996, 35(19): 3640-3646. doi: 10.1364/AO.35.003640
    [9] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. Journal of the Optical Society of America A, 2002, 19(4): 753-758. doi: 10.1364/JOSAA.19.000753
    [10] Tyson R K, Canning D E, Tharp J S. Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results[J]. Optical Engineering, 2005, 44: 096002. doi: 10.1117/1.2043047
    [11] Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems[C]//Proceedings Volume 4821, Free-Space Laser Communication and Laser Imaging II. 2002, 4821: 121-128.
    [12] Thompson C A, Kartz M W, Flath L M, et al. Free space optical communications utilizing MEMS adaptive optics correction[C]//Proceedings Volume 4821, Free-Space Laser Communication and Laser Imaging II. 2002, 4821: 129-138.
    [13] Weyrauch T, Vorontsov M A. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications[J]. Applied Optics, 2005, 44(30): 6388-6401. doi: 10.1364/AO.44.006388
    [14] Weyrauch T, Vorontsov M A. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. Journal of Optical and Fiber Communications Reports, 2004, 1(4): 355-379. doi: 10.1007/s10297-005-0033-5
    [15] Wright M W, Roberts J E, Farr W H, et al. Improved optical communications performance combining adaptive optics and pulse position modulation[J]. Optical Engineering, 2008, 47: 016003. doi: 10.1117/1.2829764
    [16] Hemmati H, Chen Y J, Crossfield I. Telescope wavefront aberration compensation with a deformable mirror in an adaptive optics system[C]//Proceedings of SPIE, Free-Space Laser Communication Technologies XVIII. 2006, 6105: 123-127.
    [17] Wilson K E, Wright M W, Lee S, et al. Adaptive optics for daytime deep space laser communications from Mars[C]//Digest of the LEOS Summer Topical Meeting. 2005: 19-20.
    [18] Boroson D M, Biswas A, Edwards B L. MLCD: Overview of NASA’s Mars laser communications demonstration system[C]//Proceedings of SPIE, Free-Space Laser Communication Technologies XVI. 2004, 5338: 16-28.
    [19] Stewart J B, Murphy D V, Moores J D, et al. Comparing adaptive optics approaches for NASA LCRD ground station #2[C]//Proceedings of SPIE, Free-Space Laser Communication and Atmospheric Propagation XXV. 2013, 8610: 86100M.
    [20] Wright M W, Morris J F, Kovalik J M, et al. Adaptive optics correction into single mode fiber for a low earth orbiting space to ground optical communication link using the OPALS downlink[J]. Optics Express, 2015, 23(26): 33705-33712. doi: 10.1364/OE.23.033705
    [21] Juarez J C, Young D W, Sluz J E, et al. Free-space optical channel propagation tests over a 147-km link[C]//Proceedings of SPIE, Atmospheric Propagation VIII. 2011, 8038: 80380B.
    [22] Heine F, Kämpfner H, Czichy R, et al. Optical inter-satellite communication operational[C]//Milcom 2010 Military Communications Conference. 2010: 1583-1887.
    [23] Sodnik Z, Armengol J P, Czichy R H, et al. Adaptive optics and ESA’s optical ground station[C]//Proceedings of SPIE, Free-Space Laser Communications IX. 2009, 7464: 746406.
    [24] Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA Optical Ground Station, Tenerife, Spain[C]//Proceedings of SPIE, Adaptive Optics Systems II. 2010, 7736: 77364C.
    [25] Gregory M, Troendle D, Muehlnikel G, et al. Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics[C]//Proceedings of SPIE, Free-space Laser Communication and Atmospheric Propagation XXV. 2013: 746406.
    [26] Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using (ETS-VI)[C]//Proceedings of SPIE, Free-Space Laser Communication Technologies VII. 1995, 2381: 151-158.
    [27] Kudielka K H, Hayano Y, Klaus W, et al. Low-order adaptive optics system for free-space lasercom: design and performance analysis[C]//Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine. 2015.
    [28] Petit C, Vedrenne N, Michau V, et al. Adaptive optics results with SOTA[C]//2015 IEEE International Conference on Space Optical Systems and Applications. 2016: 1-7.
    [29] Hashmi A J, Eftekhar A A, Adibi A, et al. Analysis of adaptive optics-based telescope arrays in a deep-space inter-planetary optical communications link between Earth and Mars[J]. Optics Communications, 2014, 333: 120-128. doi: 10.1016/j.optcom.2014.07.077
    [30] Pasupathi T, Selvi J A V, Samuel J N. Mitigation of low-order atmospheric turbulent effects using sensorless adaptive optics in terrestrial free space optical communication[C]//2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). 2016.
    [31] Carrizo C E, Calvo R M, Belmonte A. Proof of concept for adaptive sequential optimization of free-space communication receivers[J]. Applied Optics, 2019, 58(20): 5397-5403. doi: 10.1364/AO.58.005397
    [32] Brady A, Rössler C, Leonhard N, et al. Validation of pre-compensation under point-ahead-angle in a 1 km free-space propagation experiment[J]. Optics Express, 2019, 27(13): 17840-17850. doi: 10.1364/OE.27.017840
    [33] Baykal Y, Gökçe M, Ata Y. Application of adaptive optics on bit error rate of M-ary pulse-position-modulated oceanic optical wireless communication systems[J]. Laser Physics, 2020, 30: 076202. doi: 10.1088/1555-6611/ab8bdc
    [34] Toselli I, Gladysz S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 2020, 28(12): 17347-17361. doi: 10.1364/OE.394468
    [35] Paillier L, Le Bidan R, Conan J M, et al. Space-ground coherent optical links: ground receiver performance with adaptive optics and digital phase-locked loop[J]. Journal of Lightwave Technology, 2020, 38(20): 5716-5727. doi: 10.1109/JLT.2020.3003561
    [36] Ata Y, Korotkova O. Adaptive optics correction in natural turbulent waters[J]. Journal of the Optical Society of America A, 2021, 38(4): 587-594. doi: 10.1364/JOSAA.419134
    [37] Osborn J, Townson M J, Farley O J D, et al. Adaptive optics pre-compensated laser uplink to LEO and GEO[J]. Optics Express, 2021, 29(4): 6113-6132. doi: 10.1364/OE.413013
    [38] Leonhard N, Berlich R, Minardi S, et al. Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication[J]. Optics Express, 2016, 24(12): 13157-13172. doi: 10.1364/OE.24.013157
    [39] Chu Xiuxiang, Qiao Chunhong, Feng Xiaoxing, et al. Propagation of Gaussian-Schell beam in turbulent atmosphere of three-layer altitude model[J]. Applied Optics, 2011, 50(21): 3871-3878. doi: 10.1364/AO.50.003871
    [40] 姜文汉, 张雨东, 饶长辉, 等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31:0900106. (Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31: 0900106 doi: 10.3788/AOS201131.0900106
    [41] 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45:170489. (Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45: 170489
    [42] 姜文汉. 自适应光学在中国的40年——自适应光学专题导读[J]. 光电工程, 2018, 45(3):6. (Jiang Wenhan. 40 years of adaptive optics in China—introduction to adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 6
    [43] 杨慧珍, 蔡冬梅, 陈波, 等. 无波前传感自适应光学技术及其在大气光通信中的应用[J]. 中国激光, 2008, 35(5):680-684. (Yang Huizhen, Cai Dongmei, Chen Bo, et al. Analysis of adaptive optics techniques without a wave-front sensor and its application in atmospheric laser communications[J]. Chinese Journal of Lasers, 2008, 35(5): 680-684 doi: 10.3321/j.issn:0258-7025.2008.05.009
    [44] 李欢, 张洪涛, 尹福昌. 空间激光通信系统中大气湍流的自适应补偿方法[J]. 长春理工大学学报(自然科学版), 2008, 31(2):1-3. (Li Huan, Zhang Hongtao, Yin Fuchang. The adaptive optics technique for atmospheric turbulence in laser communication system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2008, 31(2): 1-3
    [45] 夏利军, 李晓峰. 基于自适应光学的大气光通信波前校正实验[J]. 信息与电子工程, 2010, 8(3):331-335. (Xia Lijun, Li Xiaofeng. Transmission wave-front correction of atmospheric optical communication based on adaptive optics technology[J]. Information and Electronic Engineering, 2010, 8(3): 331-335 doi: 10.3969/j.issn.1672-2892.2010.03.019
    [46] 武云云, 陈二虎, 张宇, 等. 自适应光学技术提高FSO性能的实验验证[J]. 光通信技术, 2012, 36(4):15-18. (Wu Yunyun, Chen Erhu, Zhang Yu, et al. Experiment on adaptive optics to improve the performance of FSO[J]. Optical Communication Technology, 2012, 36(4): 15-18 doi: 10.3969/j.issn.1002-5561.2012.04.005
    [47] 韩立强, 王祁, 信太克归, 等. 基于自适应光学补偿的自由空间光通信系统性能研究[J]. 应用光学, 2010, 31(2):301-304. (Han Liqiang, Wang Qi, Xin Taikegui, et al. Free space optical communication based on adaptive optics compensation[J]. Journal of Applied Optics, 2010, 31(2): 301-304
    [48] 武云云, 陈二虎, 张宇, 等. 自适应光学在光通信中的仿真与实验分析[J]. 光通信技术, 2012, 36(8):52-55. (Wu Yunyun, Chen Erhu, Zhang Yu, et al. Simulation and experiment analysis of adaptive optics in atmospheric laser communication[J]. Optical Communication Technology, 2012, 36(8): 52-55 doi: 10.3969/j.issn.1002-5561.2012.08.018
    [49] Li Jiawei, Zhang Zhen, Gao Jianqiu, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communications, 2016, 359: 254-260. doi: 10.1016/j.optcom.2015.07.087
    [50] 李佳蔚, 陈卫标. 星地相干光通信中的自适应光学系统带宽研究[J]. 中国激光, 2016, 43:0806003. (Li Jiawei, Chen Weibiao. Bandwidth of adaptive optics system in satellite-ground coherent laser communication[J]. Chinese Journal of Lasers, 2016, 43: 0806003 doi: 10.3788/CJL201643.0806003
    [51] Liu Wei, Shi Wenxiao, Wang Bin, et al. Free space optical communication performance analysis with focal plane based wavefront measurement[J]. Optics Communications, 2013, 309: 212-220. doi: 10.1016/j.optcom.2013.07.022
    [52] 武云云, 李新阳, 饶长辉. 大气湍流像差对空间零差二进制相移键控相干光通信误码性能的影响[J]. 光学学报, 2013, 33(6):0606002. (Wu Yunyun, Li Xinyang, Rao Changhui. Effect of atmospheric turbulence aberration on the bit-error performance of homodyne binary phase shift keying coherent optical communication[J]. Acta Optica Sinica, 2013, 33(6): 0606002 doi: 10.3788/AOS201333.0606002
    [53] Liu Wei, Shi Wenxiao, Yao Kainan, et al. Fiber coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor[J]. Optics & Laser Technology, 2014, 60: 116-123.
    [54] Li Zhaokun, Cao Jingtai, Zhao Xiaohui, et al. Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication[J]. Optics Communications, 2014, 320: 162-168. doi: 10.1016/j.optcom.2014.01.042
    [55] Liu Wei, Yao Kainan, Huang Danian, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the greenwood frequency[J]. Optics Express, 2016, 24(12): 13288-13302. doi: 10.1364/OE.24.013288
    [56] Ren Yongxiong, Xie Guodong, Huang Hao, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014, 39(10): 2845-2848.
    [57] Cao Jingtai, Zhao Xiaohui, Li Zhaokun, et al. Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication[J]. Optik, 2014, 125(20): 6142-6147. doi: 10.1016/j.ijleo.2014.06.127
    [58] Liu Chao, Chen Shanqiu, Li Xinyang, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 2014, 22(13): 15554-15563. doi: 10.1364/OE.22.015554
    [59] Liu Chao, Chen Mo, Chen Shanqiu, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21-24. doi: 10.1016/j.optcom.2015.10.033
    [60] Huang Jian, Deng Ke, Liu Chao, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication[J]. Optics Express, 2014, 22(13): 16000-16007. doi: 10.1364/OE.22.016000
    [61] Huang Jian, Mei Haiping, Deng Ke, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation[J]. Optics Communications, 2015, 356: 574-577. doi: 10.1016/j.optcom.2015.08.061
    [62] Li Ming, Cvijetic M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction[J]. Applied Optics, 2015, 54(6): 1453-1462. doi: 10.1364/AO.54.001453
    [63] Li Ming, Gao Wenbo, Cvijetic M. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction[J]. Applied Optics, 2017, 56(2): 284-297. doi: 10.1364/AO.56.000284
    [64] Chen Mo, Liu Chao, Xian Hao. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics[J]. Applied Optics, 2015, 54(29): 8722-8276. doi: 10.1364/AO.54.008722
    [65] Zhao Shengmei, Wang Le, Zou Li, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 2016, 376: 92-98. doi: 10.1016/j.optcom.2016.04.075
    [66] Chen Mo, Liu Chao, Rui Daoman, et al. Experimental results of 5-Gbps free-space coherent optical communications with adaptive optics[J]. Optics Communications, 2018, 418: 115-119. doi: 10.1016/j.optcom.2018.03.003
    [67] 芮道满, 刘超, 陈莫, 等. 自适应光学技术在星地激光通信地面站上的应用[J]. 光电工程, 2018, 45(3):170647. (Rui Daoman, Liu Chao, Chen Mo, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 2018, 45(3): 170647
    [68] Yang Leqiang, Yao Kainan, Wang Jianli, et al. Performance analysis of 349-element adaptive optics unit for a coherent free space optical communication system[J]. Scientific Reports, 2019, 9(1): 13150. doi: 10.1038/s41598-019-48338-3
    [69] Chang Huan, Yin Xiaoli, Cui Xiaozhou, et al. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links[J]. Applied Optics, 2019, 58(22): 6085-6090. doi: 10.1364/AO.58.006085
    [70] Rui Daoman, Liu Chao, Chen Mo, et al. Probability enhancement of fiber coupling efficiency under turbulence with adaptive optics compensation[J]. Optical Fiber Technology, 2020, 60: 102343. doi: 10.1016/j.yofte.2020.102343
    [71] Chang Huan, Yin Xiaoli, Yao Haipeng, et al. Low-complexity adaptive optics aided orbital angular momentum based wireless communications[J]. IEEE Transactions on Vehicular Technology, 2020, 1(1): 1-13.
    [72] Gu Haijun, Liu Meiqi, Liu Haoyu, et al. An algorithm combining convolutional neural networks with SPGD for SLAO in FSOC[J]. Optics Communications, 2020, 475: 126243. doi: 10.1016/j.optcom.2020.126243
    [73] Jiang Lun, Dai Zhengshuang, Yu Xin, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 2021, 42(3): 363-370. doi: 10.1007/s10946-021-09971-4
    [74] Zhang Shen, Wang Rui, Wang Yukun, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 2021, 482: 126571. doi: 10.1016/j.optcom.2020.126571
    [75] Chen Mo, Liu Chao, Rui Daoman, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express, 2018, 26(4): 4230-4242. doi: 10.1364/OE.26.004230
    [76] Liu Wei, Yao Kainan, Chen Lu, et al. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor[J]. Optics & Laser Technology, 2018, 100: 332-341.
    [77] 柯熙政, 吴加丽, 杨尚君. 面向无线光通信的大气湍流研究进展与展望[J]. 电波科学学报, 2021, 36(3):323-339. (Ke Xizheng, Wu Jiali, Yang Shangjun. Research progress and prospect of atmospheric turbulence for wireless optical communication[J]. Chinese Journal of Radio Science, 2021, 36(3): 323-339 doi: 10.12265/j.cjors.2020116
    [78] 柯熙政, 邓莉君. 无线光通信中的部分相干光传输理论[M]. 北京: 科学出版社, 2016.

    Ke Xizheng, Deng Lijun. Theory of partially coherent optical transmission in wireless optical communication[M]. Beijing: Science Press, 2016
    [79] 柯熙政, 殷致云. 无线激光通信系统中的编码理论[M]. 北京: 科学出版社, 2009.

    Ke Xizheng, Yin Zhiyun. Coding theory in wireless laser communication system[M]. Beijing: Science Press, 2009
    [80] 柯熙政, 邓莉君. 无线光通信[M]. 北京: 科学出版社, 2016.

    Ke Xizheng, Deng Lijun. Wireless laser communication[M]. Beijing: Science Press, 2016
    [81] 柯熙政, 谌娟, 邓莉君. 无线光MIMO系统中空时编码理论[M]. 北京: 科学出版社, 2014.

    Ke Xizheng, Chen Juan, Deng Lijun. Space time coding theory for wireless optical MIMO systems[M]. Beijing: Science Press, 2014
    [82] 柯熙政. 无线光正交频分复用原理及应用[M]. 北京: 科学出版社, 2017.

    Ke Xizheng. Principle and application of wireless optical orthogonal frequency division multiplexing[M]. Beijing: Science Press, 2017
    [83] 柯熙政, 吴加丽. 无线光相干通信原理及应用[M]. 北京: 科学出版社, 2019.

    Ke Xizheng, Wu Jiali. Principle and application of wireless optical coherent communication[M]. Beijing: Science Press, 2019
    [84] 柯熙政. 紫外光自组织网络理论[M]. 北京: 科学出版社, 2011.

    Ke Xizheng. Theory of UV self-organizing network[M]. Beijing: Science Press, 2011
    [85] 柯熙政, 王姣. 涡旋光束的产生、传输、检测及应用[M]. 北京: 科学出版社, 2018.

    Ke Xizheng, Wang Jiao. Generation, transmission, detection and application of vortex beam[M]. Beijing: Science Press, 2018
    [86] 柯熙政, 陈锦妮. 无线激光通信外差检测系统及其检测方法: CN103051375A[P]. 2013-04-17.

    Ke Xizheng, Chen Jinni. Heterodyne detection system and method for wireless laser communication: CN103051375A[P]. 2013-04-17
    [87] 谭振坤, 柯熙政, 王姣. 外差探测系统波前校正实验研究[J]. 仪器仪表学报, 2018, 39(12):121-127. (Tan Zhenkun, Ke Xizheng, Wang Jiao. Experimental study on the wavefront correction of heterodyne detection system[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 121-127
    [88] Wu Jiali, Ke Xizheng. Development of adaptive optical correction and polarization control modules for 10-km free-space coherent optical communications[J]. Journal of Modern Optics, 2020, 67(3): 189-195. doi: 10.1080/09500340.2019.1706772
    [89] Ke Xizheng, Yang Shangjun, Wang Jiao. Experimental study of free space coherent optical communication on 1km[C]//10th International Conference on Advanced Infocomm Technology (ICAIT). Stockholm, Sweden: IEEE, 2018: 61-65.
    [90] Ke Xizheng, Chen Xiaozhan. Correcting wavefront distortion of dual-wavelength beams due to atmospheric turbulence with a correction coefficient[J]. Optics and Photonics Journal, 2020, 10(4): 64-77. doi: 10.4236/opj.2020.104006
    [91] Ke Xizheng, Tan Zhenkun. Effect of angle-of-arrival fluctuation on heterodyne detection in slant atmospheric turbulence[J]. Applied Optics, 2018, 57(5): 1083-1090. doi: 10.1364/AO.57.001083
    [92] Tan Zhenkun, Ke Xizheng. Analysis of a heterodyne detection system affected by irradiance and phase fluctuations in slant atmospheric turbulence[J]. Applied Optics, 2018, 57(32): 9596-9603. doi: 10.1364/AO.57.009596
    [93] Boyer C, Michau V, Rousset G. Adaptive optics: Interaction matrix measurements and real-time control algorithms for the COME-ON project[C]//Proceedings Volume 1237, Amplitude and Intensity Spatial Interferometry. 1990, 1237: 63-81.
    [94] Kasper M, Fedrigo E, Looze D P, et al. Fast calibration of high-order adaptive optics systems[J]. Journal of the Optical Society of America A, 2004, 21(6): 1004-1008. doi: 10.1364/JOSAA.21.001004
    [95] Paschall R N, Anderson D J. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements[J]. Applied Optics, 1993, 32(31): 6347-6358. doi: 10.1364/AO.32.006347
    [96] 张丹玉. 自适应光学波前畸变控制及实验研究[D]. 西安: 西安理工大学, 2020.

    Zhang Danyu. Research on wavefront distortion control and experiment of adaptive optics[D]. Xi’an: Xi’an University of Technology, 2020
    [97] Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 2012, 20(25): 27922-27932. doi: 10.1364/OE.20.027922
    [98] Haber A, Polo A, Smith C S, et al. Iterative learning control of a membrane deformable mirror for optimal wavefront correction[J]. Applied Optics, 2013, 52(11): 2363-2373. doi: 10.1364/AO.52.002363
    [99] 刘章文, 李正东, 周志强, 等. 基于模糊控制的自适应光学校正技术[J]. 物理学报, 2016, 65:014206. (Liu Zhangwen, Li Zhengdong, Zhou Zhiqiang, et al. Adaptive optics correction technique based on fuzzy control[J]. Acta Physica Sinica, 2016, 65: 014206 doi: 10.7498/aps.65.014206
    [100] Ke Xizheng, Zhang Danyu. Fuzzy control algorithm for adaptive optical systems[J]. Applied Optics, 2019, 58(36): 9967-9975. doi: 10.1364/AO.58.009967
    [101] 李有宽, 陈栋泉, 杜祥琬. 大气闪烁对自适应光学校正的影响[J]. 强激光与粒子束, 2004, 16(5):545-550. (Li Youkuan, Chen Dongquan, Du Xiangwan. Atmospheric scintillation effect on adaptive optics correction[J]. High Power Laser and Particle Beams, 2004, 16(5): 545-550
    [102] 杨珂. 计算光场成像波前传感技术研究[D]. 西安: 西安理工大学, 2019.

    Yang Ke. Research on wavefront sensing technology with computational light field imaging[D]. Xi’an: Xi’an University of Technology, 2019
    [103] 柯熙政, 杨珂, 张颖. CAPIS技术探测波前畸变的实验研究[J]. 激光与光电子学进展, 2019, 56:120101. (Ke Xizheng, Yang Ke, Zhang Ying. Experimental study on wavefront distortion detection using CAPIS technology[J]. Laser & Optoelectronics Progress, 2019, 56: 120101
    [104] 柯熙政, 张云峰. 无波前传感自适应系统及利用该系统提高收敛速度的方法: CN110365404A[P]. 2019-10-22.

    Ke Xizheng, Zhang Yunfeng. Wavefront-free sensing adaptive system and method of improving convergence rate by using system: CN110365404A[P]. 2019-10-22
    [105] 李梅. 光束波前畸变的本征模式法校正实验研究[D]. 西安: 西安理工大学, 2020.

    Li Mei. Experimental study on eigenmode method correction of beam distortion[D]. Xi’an: Xi’an University of Technology, 2020
    [106] 喻际, 董冰. 基于变形镜本征模式的无波前传感器自适应光学系统实验研究[J]. 光学学报, 2015, 35:0322004. (Yu Ji, Dong Bing. Experimental study of wavefront sensorless adaptive optics based on deformable mirror eigen modes[J]. Acta Optica Sinica, 2015, 35: 0322004 doi: 10.3788/AOS201535.0322004
    [107] Ke Xizheng, Li Mei. Laser beam distorted wavefront correction based on deformable mirror eigenmodes[J]. Optical Engineering, 2019, 58: 126101.
    [108] 柯熙政, 张云峰, 张颖, 等. 无波前传感自适应波前校正系统的图形处理器加速[J]. 激光与光电子学进展, 2019, 56:070101. (Ke Xizheng, Zhang Yunfeng, Zhang Ying, et al. GPU acceleration in wave-front sensorless adaptive wave-front correction system[J]. Laser & Optoelectronics Progress, 2019, 56: 070101
    [109] 马慧敏, 张鹏飞, 张京会, 等. 自适应光学系统随机并行梯度下降算法[J]. 强激光与粒子束, 2010, 22(6):1206-1210. (Ma Huimin, Zhang Pengfei, Zhang Jinghui, et al. Stochastic parallel gradient descent algorithm for adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(6): 1206-1210 doi: 10.3788/HPLPB20102206.1206
    [110] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 2006, 31(7): 939-941. doi: 10.1364/OL.31.000939
    [111] 杨慧珍, 李新阳, 姜文汉. 自适应光学系统几种随机并行优化控制算法比较[J]. 强激光与粒子束, 2008, 20(1):11-16. (Zhang Huizhen, Li Xinyang, Jiang Wenhan. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system[J]. High Power Laser and Particle Beams, 2008, 20(1): 11-16
    [112] 吴加丽. 无波前探测的相干光通信系统实验研究[D]. 西安: 西安理工大学, 2018.

    Wu Jiali. Research of the coherent optical communication system with wavefront sensorless[D]. Xi’an: Xi’an University of Technology, 2018
    [113] Vorontsov M A. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion[J]. Journal of the Optical Society of America A, 2002, 19(2): 356-368. doi: 10.1364/JOSAA.19.000356
    [114] 吴加丽, 柯熙政. 无波前传感器的自适应光学校正[J]. 激光与光电子学进展, 2018, 55:030103. (Wu Jiali, Ke Xizheng. Adaptive optics correction of wavefront sensorless[J]. Laser & Optoelectronics Progress, 2018, 55: 030103
    [115] 谭振坤. 无线光通信中外差探测性能影响因素及实验研究[D]. 西安: 西安理工大学, 2019.

    Tan Zhenkun. Effects of factors on the performance of heterodyne detection and experimental investigation in wireless optical communication[D]. Xi’an: Xi’an University of Technology, 2019
    [116] 王夏尧. 涡旋光束的自适应光学校正技术研究[D]. 西安: 西安理工大学, 2018.

    Wang Xiayao. Research on adaptive optics correction technique of vortex beams[D]. Xi’an: Xi’an University of Technology, 2018
    [117] 柯熙政, 王夏尧. 涡旋光波前畸变校正实验研究[J]. 光学学报, 2018, 38:0328018. (Ke Xizheng, Wang Xiayao. Experimental study on the correction of wavefront distortion for vortex beam[J]. Acta Optica Sinica, 2018, 38: 0328018 doi: 10.3788/AOS201838.0328018
    [118] 崔娜梅. 相位差法校正涡旋光束波前畸变的实验研究[D]. 西安: 西安理工大学, 2020.

    Cui Namei. Experimental research on correcting wavefront distortion of vortex beam by phase diversity method[D]. Xi’an: Xi’an University of Technology, 2020
    [119] Ke Xizheng, Cui Namei. Experimental research on phase diversity method for correcting vortex beam distortion wavefront[J]. Applied Physics B, 2020, 126: 66.
    [120] 柯熙政, 韩柯娜. 液晶空间光调制器的波前模拟及波前校正[J]. 激光与光电子学进展, 2019, 56:051403. (Ke Xizheng, Han Kena. Wavefront simulation and wavefront correction of liquid crystal spatial light modulator[J]. Laser & Optoelectronics Progress, 2019, 56: 051403
    [121] 孔英秀. LC-SLM的空间相干光通信波前校正技术[D]. 西安: 西安理工大学, 2019.

    Kong Yingxiu. Wavefront correction technique of spatial coherent optical communication with LC-SLM[D]. Xi’an: Xi’an University of Technology, 2019
    [122] 孔英秀, 柯熙政, 杨媛. 大气湍流对空间相干光通信的影响研究[J]. 激光与光电子学进展, 2015, 52:080601. (Kong Yingxiu, Ke Xizheng, Yang Yuan. Influence research of atmospheric turbulence on space coherent optical communications[J]. Laser & Optoelectronics Progress, 2015, 52: 080601
    [123] 李新阳, 凌宁, 陈东红, 等. 自适应光学系统中高速倾斜反射镜的稳定控制[J]. 强激光与粒子束, 1999, 11(1):31-36. (Li Xinyang, Ling Ning, Chen Donghong, et al. Stable control of the fast steering mirror in adaptive optics system[J]. High Power Laser and Particle Beams, 1999, 11(1): 31-36
    [124] 李有宽, 陈栋泉, 杜祥琬. 双变形镜自适应光学全场补偿模拟[J]. 强激光与粒子束, 2000, 12(6):665-669. (Li Youkuan, Chen Dongquan, Du Xiangwan. Simulation of full field correction with two-deformable-mirror adaptive optics[J]. High Power Laser and Particle Beams, 2000, 12(6): 665-669
    [125] 柯熙政, 罗静, 雷思琛. 空间光耦合自动对准方法与实现[J]. 红外与激光工程, 2018, 47:0103009. (Ke Xizheng, Luo Jing, Lei Sichen. Automatic alignment method and realization of space optical coupling[J]. Infrared and Laser Engineering, 2018, 47: 0103009 doi: 10.3788/IRLA201847.0103009
    [126] 柯熙政, 陈炜. 基于光纤阵列的空间光耦合探测装置: CN103209022A[P]. 2013-07-17.

    Ke Xizheng, Chen Wei. Space optic coupling detection device based on optical fiber arrays: CN103209022A[P]. 2013-07-17
    [127] 罗静. 空间光耦合自动对准技术研究[D]. 西安: 西安理工大学, 2018.

    Luo Jing. Research on automatic alignment technology of space optical fiber coupling[D]. Xi’an: Xi’an University of Technology, 2018
    [128] Ke Xizheng, Yin Benkang. Experimental research on automatic alignment and control algorithm of spatial light-fiber coupling[J]. International Journal of Optics, 2021, 2021: 8481146.
    [129] 柯熙政, 张旭彤. 一种利用模式转换提高单模光纤耦合效率的方法: CN110133803A[P]. 2019-08-16.

    Ke Xizheng, Zhang Xutong. Method of improving single-mode optical fiber coupling efficiency through mode conversion: CN110133803A[P]. 2019-08-16
    [130] 张旭彤. 模式转换法提高单模光纤耦合效率的研究[D]. 西安: 西安理工大学, 2020.

    Zhang Xutong. Research on mode conversion to improve coupling efficiency on single-mode fiber[D]. Xi’an: Xi’an University of Technology, 2020
    [131] Ke Xizheng, Zhang Xutong. Conversion of free-space optical path mode by spatial light modulator[J]. Optical Engineering, 2020, 59: 016109.
  • 加载中
图(33)
计量
  • 文章访问数:  2333
  • HTML全文浏览量:  901
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-01
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回