Watt-level ~3 μm laser in AlF3-based glass fiber
-
摘要:
研究了基于Ho3+/Pr3+共掺AlF3基玻璃单包层光纤的瓦级~3 μm激光。采用单模1150 nm光纤激光器泵浦上述增益光纤,得到了波长2.87 μm的激光输出,其最大输出功率为1.02 W,激光斜率效率为10.7%,输出激光的光束质量因子M2≈1.2。研究结果表明,AlF3基玻璃光纤是一种潜在的可获得高功率中红外激光输出的增益介质。
-
关键词:
- 氟化铝基 /
- Ho3+/Pr3+共掺 /
- ~3 μm激光 /
- 瓦级 /
- 稳定性
Abstract:A mid-infrared fiber laser operating at λ≈3 μm is demonstrated using a Ho3+/Pr3+ co-doped AlF3-based glass fiber as a gain fiber. Under 1150 nm single-mode fiber laser pumping, the fixed-wavelength laser had maximum output power of 1.02 W, a slope efficiency of 10.7%, and M2≈1.2. The results prove this type of fiber is a potential gain medium for more powerful mid-infrared fiber lasers.
-
Key words:
- AlF3-based /
- Ho3+/Pr3+co-doped /
- ~3 μm laser /
- watt-level /
- stability
-
-
[1] Zhu Xiushan, Jain R. Watt-level 100-nm tunable 3- μm fiber laser[J]. IEEE Photonics Technol Lett, 2008, 20(2): 156-158. doi: 10.1109/LPT.2007.912495 [2] Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Opt Lett, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233 [3] Tsang Y H, El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~ 1.1 μm by an Yb fiber laser[J]. Laser Phys Lett, 2011, 8(11): 818-822. doi: 10.1002/lapl.201110068 [4] Sumiyoshi T, Sekita H, Arai T, et al. High-power continuous-wave 3- and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications[J]. IEEE J Sel Top Quantum Electron, 1999, 5(4): 936-943. doi: 10.1109/2944.796314 [5] Pollnan M. The route toward a diode-pumped 1-W erbium 3-μm fiber laser[J]. IEEE J Quantum Electron, 1997, 33(11): 1982-1990. doi: 10.1109/3.641313 [6] Li Jianfeng, Luo Hongyu, Wang Lele, et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Opt Express, 2015, 23(17): 22362-22370. doi: 10.1364/OE.23.022362 [7] Li Jianfeng, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Opt Lett, 2011, 36(18): 3642-3644. doi: 10.1364/OL.36.003642 [8] Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser[J]. Opt Lett, 1999, 24(16): 1133-1135. doi: 10.1364/OL.24.001133 [9] Hudson D D, Williams R J, Withford M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Opt Lett, 2013, 38(14): 2388-2390. doi: 10.1364/OL.38.002388 [10] Frischat G H, Hueber B, Ramdohr B. Chemical stability of ZrF4- and AlF3-based heavy metal fluoride glasses in water[J]. J Non-Cryst Solids, 2001, 284(1/3): 105-109. [11] Wang Yuhu, Sawanobori N, Nagahama S. Formation of fluoride glasses based on AlF3—YF3—PbF2 system[J]. J Non-Cryst Solids, 1991, 128(3): 322-325. doi: 10.1016/0022-3093(91)90469-M [12] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Opt Lett, 2018, 43(5): 971-974. doi: 10.1364/OL.43.000971 [13] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Opt Lett, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542 [14] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics J, 2015, 7: 1502309. [15] Jia S J, Jia Z X, Yao C F, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Phys, 2018, 28: 015802. doi: 10.1088/1555-6611/aa962e [16] Wang Shunbin, Zhang Jiquan, Xu Niannian, et al. 2.9 μm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Opt Lett, 2020, 45(5): 1216-1219. doi: 10.1364/OL.384216 -