留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法

郑铠涛 李海艳 甘华权 黄运保 理玉龙 景龙飞 关赞洋 黄庆鑫 余远平

郑铠涛, 李海艳, 甘华权, 等. 基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35: 072002. doi: 10.11884/HPLPB202335.230011
引用本文: 郑铠涛, 李海艳, 甘华权, 等. 基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35: 072002. doi: 10.11884/HPLPB202335.230011
Zheng Kaitao, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization[J]. High Power Laser and Particle Beams, 2023, 35: 072002. doi: 10.11884/HPLPB202335.230011
Citation: Zheng Kaitao, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization[J]. High Power Laser and Particle Beams, 2023, 35: 072002. doi: 10.11884/HPLPB202335.230011

基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法

doi: 10.11884/HPLPB202335.230011
基金项目: 国家自然科学基金项目(12127810, 51975125, 12105269)
详细信息
    作者简介:

    郑铠涛,975925612@qq.com

    通讯作者:

    李海艳, cathylhy@gdut.edu.cn

  • 中图分类号: TP391

CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization

  • 摘要: 针对基于超快压缩成像(CUP)与二维任意反射面速度干涉仪(VISAR)获得的压缩图像重构冲击波二维条纹的问题,提出了一种基于低秩约束和全变分正则化的压缩图像重构算法。该算法利用条纹图像空间结构的相似性以及平滑性,将重构问题转化为核范数最小化和全变分正则化的优化问题,利用即插即用的交替方向乘子法将优化问题分裂为多个子问题求解,实现了CUP-VISAR压缩图像的精准重构。仿真结果表明,在大噪声的条件下,重构图像的峰值信噪比提高了8.45 dB,结构相似性提高了8.52%,重构效果优于主流重构算法。进一步设计实际实验,实验结果表明,冲击波条纹的最大速度相对误差从13.5%降低到3.46%,减少了近10%,验证了算法的有效性。
  • 图  1  CUP-VISAR诊断系统

    Figure  1.  CUP-VISAR diagnostic system

    图  2  PnP-ADMM重构算法流程图

    Figure  2.  Flowchart of PnP-ADMM reconstruction algorithm

    图  3  原始条纹图像数据

    Figure  3.  Original fringes images data

    图  4  编码图像

    Figure  4.  Coded mask image

    图  5  噪声观测图像

    Figure  5.  Noise observation image

    图  6  不同算法的重构结果图

    Figure  6.  Reconstruction results of different algorithms

    图  7  重构图像的PSNR和SSIM曲线图

    Figure  7.  PSNR and SSIM curves of reconstructed images

    图  8  实验布置图

    Figure  8.  Schematic of experimental setup

    图  9  编码掩模图像

    Figure  9.  Coded mask image

    图  10  条纹相机观测图像

    Figure  10.  Observation images of streak camera

    图  11  动态实验重构图像

    Figure  11.  Images of dynamic experiment reconstruction

    图  12  从重构图像中提取VISAR图像

    Figure  12.  Extracted VISAR images from reconstructed images

    图  13  冲击波速度曲线及相对误差图

    Figure  13.  Shock wave velocity curve and relative error diagram

  • [1] 郑万国, 齐红基. 人类首次实现聚变“点火”, 激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1):1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001

    Zheng Wanguo, Qi Hongji. An exclusive interview with ZHENG Wanguo on the “Ignition” milestone in human history[J]. Journal of Synthetic Crystals, 2023, 52(1): 1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001
    [2] Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12(8): 800-806. doi: 10.1038/nphys3720
    [3] Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [4] 王峰, 关赞洋, 理玉龙, 等. 基于神光Ⅲ装置的光学诊断系统介绍[J]. 中国科学:物理学 力学 天文学, 2018, 48(6):48-58

    Wang Feng, Guan Zanyang, Li Yulong, et al. Optical diagnostic systems based on Shenguang Ⅲ[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48(6): 48-58
    [5] 刘寿先, 李泽仁, 彭其先, 等. 一种新的线成像激光干涉测速系统[J]. 强激光与粒子束, 2009, 21(2):213-216

    Liu Shouxian, Li Zeren, Peng Qixian, et al. A novel line-imaging velocity interferometer for shock diagnostics[J]. High Power Laser and Particle Beams, 2009, 21(2): 213-216
    [6] 刘寿先, 李泽仁, 彭其先, 等. 用于激光驱动飞片诊断的线成像速度干涉仪[J]. 强激光与粒子束, 2010, 22(10):2281-2284 doi: 10.3788/HPLPB20102210.2281

    Liu Shouxian, Li Zeren, Peng Qixian, et al. Line-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 2010, 22(10): 2281-2284 doi: 10.3788/HPLPB20102210.2281
    [7] Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
    [8] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [9] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [10] 王峰, 理玉龙, 关赞洋, 等. 压缩感知技术在激光惯性约束聚变研究中的应用[J]. 强激光与粒子束, 2022, 34:031021 doi: 10.11884/HPLPB202234.210250

    Wang Feng, Li Yulong, Guan Zanyang, et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34: 031021 doi: 10.11884/HPLPB202234.210250
    [11] Zhu Liren, Chen Yujia, Liang Jinyang, et al. Space- and intensity-constrained reconstruction for compressed ultrafast photography[J]. Optica, 2016, 3(7): 694-697. doi: 10.1364/OPTICA.3.000694
    [12] Liang Jinyang, Ma Cheng, Zhu Liren, et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse[J]. Science Advances, 2017, 3: e1601814. doi: 10.1126/sciadv.1601814
    [13] Yang Chengshuai, Qi Dalong, Liang Jinyang, et al. Compressed ultrafast photography by multi-encoding imaging[J]. Laser Physics Letters, 2018, 15: 116202. doi: 10.1088/1612-202X/aae198
    [14] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259-268.
    [15] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/TIP.2007.909319
    [16] 马坚伟, 徐杰, 鲍跃全, 等. 压缩感知及其应用: 从稀疏约束到低秩约束优化[J]. 信号处理, 2012, 28(5):609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001

    Ma Jianwei, Xu Jie, Bao Yuequan, et al. Compressive sensing and its application: from sparse to low-rank regularized optimization[J]. Signal Processing, 2012, 28(5): 609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001
    [17] Candès E J, Li Xiaodong, Ma Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58: 11.
    [18] Chen S H, Wang Xiran, Elgendy O A. Plug-and-Play ADMM for image restoration: fixed-point convergence and applications[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 84-98. doi: 10.1109/TCI.2016.2629286
    [19] Venkatakrishnan S V, Bouman C A, Wohlberg B. Plug-and-Play priors for model based reconstruction[C]//IEEE Global Conference on Signal and Information Processing. 2013: 945-948.
    [20] Madych W R. Solutions of underdetermined systems of linear equations[J]. Spatial Statistics and Imaging, 1991, 20: 227-238.
    [21] Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695. doi: 10.1109/TIP.2010.2076294
    [22] Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772. doi: 10.1007/s10208-009-9045-5
    [23] Candès E J, Tao T. The power of convex relaxation: near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080. doi: 10.1109/TIT.2010.2044061
    [24] Cai Jianfeng, Candès E J, Shen Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970
    [25] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009
    [26] Tanabe Y, Ishida T. Quantification of the accuracy limits of image registration using peak signal-to-noise ratio[J]. Radiological Physics and Technology, 2017, 10(1): 91-94. doi: 10.1007/s12194-016-0372-3
    [27] Brunet D, Vrscay E R, Wang Zhou. On the mathematical properties of the structural similarity index[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1488-1499. doi: 10.1109/TIP.2011.2173206
  • 加载中
图(13)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  182
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回