留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗弯曲大模场面积少模光子晶体光纤

解国兴 谭芳 张云龙 高斌豪 崔顺发 穆伟 朱先和

解国兴, 谭芳, 张云龙, 等. 抗弯曲大模场面积少模光子晶体光纤[J]. 强激光与粒子束, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046
引用本文: 解国兴, 谭芳, 张云龙, 等. 抗弯曲大模场面积少模光子晶体光纤[J]. 强激光与粒子束, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046
Xie Guoxing, Tan Fang, Zhang Yunlong, et al. Bending resistant large mode field area few-mode photonic crystal fiber[J]. High Power Laser and Particle Beams, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046
Citation: Xie Guoxing, Tan Fang, Zhang Yunlong, et al. Bending resistant large mode field area few-mode photonic crystal fiber[J]. High Power Laser and Particle Beams, 2023, 35: 121002. doi: 10.11884/HPLPB202335.230046

抗弯曲大模场面积少模光子晶体光纤

doi: 10.11884/HPLPB202335.230046
基金项目: 中青年科技创新创业卓越人才项目(20210509044RQ)
详细信息
    作者简介:

    解国兴,xieguoxing97@163.com

    通讯作者:

    谭 芳,tanf280267@sina.com

  • 中图分类号: TN252

Bending resistant large mode field area few-mode photonic crystal fiber

  • 摘要: 为更好地解决少模光纤在传输中由于模式耦合过强而导致的信号串扰问题,对弱耦合光子晶体光纤中的线偏振(LP)模式以及矢量模的传输特性进行了研究,设计了一种可传输20种矢量模的双包层光子晶体光纤。通过有限元法模拟光纤参数对相邻LP模式间最小有效折射率差的影响,优化结构参数,使光纤支持稳定传输6种LP模式并满足弱耦合要求。最后分析了不同模式的有效模场面积、弯曲损耗。结果表明:各模式之间的最小有效折射率差达到1.12×10−4,表明模式间的串扰可忽略。基模有效模场面积达到了1040 μm2,且其相应的非线性系数低至1.07×10−10。此外,在弯曲半径为38 mm时,各模式弯曲损耗最大仅为5.65×10−8 dB/km。与主流的单模光纤及少模单包层相比,该结构具有大模场面积,低模间串扰及更强的抗弯曲能力,丰富了空分复用技术的开发思路。在大数据、虚拟现实、网络传输容量等新兴业务以及光纤传感方面提供了有益的参考方案。
  • 图  1  双包层光子晶体光纤结构

    Figure  1.  Double-clad photonic crystal fiber structure

    图  2  光子晶体光纤局部结构图

    Figure  2.  Local structure of photonic crystal fiber

    图  3  不同空气孔直径下光纤模场功率随光纤径向轴线分布图

    Figure  3.  Distribution of fiber mode field power along the radial axis of the fiber under different air hole diameters

    图  4  PCF的6种LP模式及其矢量模电场分布图

    Figure  4.  Six LP modes of PCF and their electric field distributions

    图  5  6个线偏振模式功率随纤芯半径径向轴线分布图

    Figure  5.  Power distribution of six linear polarization modes along radial axis of core radius

    图  6  λ=1.55 μm处有效折射率与折射率差随纤芯半径Rc变化

    Figure  6.  λ=1.55 μm, neff and ∆neff change with core radius Rc

    图  7  6种模式有效模场面积与非线性系数随纤芯半径Rc变化趋势图

    Figure  7.  Trend chart of effective mode field area and nonlinear coefficient of six modes changing with core radius Rc

    图  8  弯曲光纤6个线偏振模式模场图

    Figure  8.  Mode fields of six linearly polarized modes in bend fiber

    图  9  弯曲损耗随弯曲半径Rb的变化图

    Figure  9.  Variation of bending loss with bending radius Rb

    图  10  6种模式串扰损耗随波长变化趋势图

    Figure  10.  Crosstalk loss trend of six modes with wavelength

  • [1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [2] Velázquez-Benítez A M, Alvarado-Zacarias J C, Lopez-Galmiche G, et al. Six spatial modes photonic lanterns[C]//Proceedings of Optical Fiber Communication Conference. 2015: W3B. 3.
    [3] Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers[J]. Laser & Photonics Reviews, 2014, 8(5): L81-L85.
    [4] Benyahya K, Simonneau C, Ghazisaeidi A, et al. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection[J]. Journal of Lightwave Technology, 2018, 36(2): 355-360. doi: 10.1109/JLT.2017.2779825
    [5] Liu Huiyuan, Wen He, Zacarias J C A, et al. Demonstration of stable 3×10 Gb/s mode group-multiplexed transmission over a 20 km few-mode fiber[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition. 2018: 1-3.
    [6] Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17): 16576-16592. doi: 10.1364/OE.19.016576
    [7] Soma D, Wakayama Y, Beppu S, et al. 10.16-peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band[J]. Journal of Lightwave Technology, 2018, 36(6): 1362-1368.
    [8] 李巨浩, 葛大伟, 高宇洋, 等. 基于弱耦合少模光纤的模分复用技术进展(特邀)[J]. 光通信研究, 2018(6):31-37

    Li Juhao, Ge Dawei, Gao Yuyang, et al. Recent progress in mode division multiplexing techniques based on weakly-coupled few-mode fiber[J]. Study on Optical Communications, 2018(6): 31-37
    [9] 张金玉, 任芳, 张艺赢, 等. 面向传感应用的弱耦合偏芯少模光纤设计与分析[J]. 光学学报, 2020, 40:2406001

    Zhang Jinyu, Ren Fang, Zhang Yiying, et al. Design and analysis of weakly-coupled eccentric-core few-mode fiber for sensing application[J]. Acta Optica Sinica, 2020, 40: 2406001
    [10] 雷晓, 任芳, 张艺赢, 等. 面向模分复用的沟槽-纳米孔辅助双包层弱耦合少模光纤[J]. 光学学报, 2021, 41:2306003

    Lei Xiao, Ren Fang, Zhang Yiying, et al. Trench-nanopore assisted double-clad weakly coupled few-mode fiber for mode division multiplexing[J]. Acta Optica Sinica, 2021, 41: 2306003
    [11] 许鹏飞, 宋向阳, 周德春, 等. 铋酸盐玻璃高双折射大负色散微结构光纤设计[J]. 中国激光, 2021, 48:2406002 doi: 10.3788/CJL202148.2406002

    Xu Pengfei, Song Xiangyang, Zhou Dechun, et al. Bismuthate glass microstructure fiber with high birefringence and large negative dispersion[J]. Chinese Journal of Lasers, 2021, 48: 2406002 doi: 10.3788/CJL202148.2406002
    [12] Zheng Siwen, Ren Guobin, Lin Zhen, et al. A novel four-air-hole multicore dual-mode large-mode-area fiber: proposal and design[J]. Optical Fiber Technology, 2013, 19(5): 419-427. doi: 10.1016/j.yofte.2013.05.005
    [13] Sharma M, Dixit V, Konar S, et al. Endlessly single-mode photonic crystal fiber with high birefringence for sensing applications[J]. Modern Physics Letters B, 2020, 34: 2050077.
    [14] Yang S H, Jung E M, Han S K. Indoor location estimation based on LED visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013, 17(9): 1834-1837. doi: 10.1109/LCOMM.2013.070913.131120
    [15] 李锦豪, 姜海明, 谢康. 光子晶体光纤制备工艺的发展与现状[J]. 科技创新与应用, 2021, 11(26):105-110,114

    Li Jinhao, Jiang Haiming, Xie Kang. Development and situation of preparation process of photonic crystal fiber[J]. Technology Innovation and Application, 2021, 11(26): 105-110,114
    [16] Gloge D. Weakly guiding fibers[J]. Applied Optics, 1971, 10(10): 2252-2258. doi: 10.1364/AO.10.002252
    [17] Ren Fang, Li Juhao, Hu Tao, et al. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX[J]. IEEE Photonics Journal, 2015, 7: 7903509.
    [18] Olshansky R. Mode coupling effects in graded-index optical fibers[J]. Applied Optics, 1975, 14(4): 935-945. doi: 10.1364/AO.14.000935
    [19] Riesen N, Love J D, Arkwright J W. Few-mode elliptical-core fiber data transmission[J]. IEEE Photonics Technology Letters, 2011, 24(5): 344-346.
    [20] Rahman M S, Haque M, Kim K D. High precision indoor positioning using lighting LED and image sensor[C]//Proceedings of the 14th International Conference on Computer and Information Technology. 2011: 309-314.
    [21] Haxha S, Ademgil H. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Optics Communications, 2008, 281(2): 278-286. doi: 10.1016/j.optcom.2007.09.041
    [22] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963. doi: 10.1364/OL.22.000961
    [23] 马丽伶, 李曙光, 李建设, 等. 一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤[J]. 物理学报, 2022, 71:104206 doi: 10.7498/aps.71.20212221

    Ma Liling, Li Shuguang, Li Jianshe, et al. A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance[J]. Acta Physica Sinica, 2022, 71: 104206 doi: 10.7498/aps.71.20212221
    [24] 郑斯文, 刘亚卓, 罗晓玲, 等. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析[J]. 物理学报, 2021, 70:224214 doi: 10.7498/aps.70.20210410

    Zheng Siwen, Liu Yazhuo, Luo Xiaoling, et al. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss[J]. Acta Physica Sinica, 2021, 70: 224214 doi: 10.7498/aps.70.20210410
  • 加载中
图(10)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  173
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-10-28
  • 录用日期:  2023-10-28
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回