留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器

李弋 王浩淼 张亮 贺钰雯 周坤 杜维川 何林安 胡耀 武德勇 高松信 唐淳

李弋, 王浩淼, 张亮, 等. 大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器[J]. 强激光与粒子束, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
引用本文: 李弋, 王浩淼, 张亮, 等. 大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器[J]. 强激光与粒子束, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
Citation: Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073

大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器

doi: 10.11884/HPLPB202335.230073
详细信息
    作者简介:

    李 弋,njuliyi@aliyun.com

    通讯作者:

    贺钰雯,18380597763@163.com

  • 中图分类号: TN248.4

High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation

  • 摘要: 设计并制备了780 nm大功率半导体激光器的单管和巴条。采用金属有机化学气相沉积技术制备的外延结构,分别使用GaAsP和GaInP作为量子阱和波导层,限制层是具有高带隙的AlGaInP材料。量子阱与波导层带隙0.15 eV,波导层与限制层带隙0.28 eV,抑制了载流子泄露。1.55 μm厚非对称大光学腔波导结构抑制快轴高阶模,同时缓解腔面损伤问题。为进一步提高腔面损伤阈值,利用超高真空解理和钝化技术,在腔面上沉积了非晶ZnSe钝化层。条宽150 μm、腔长4 mm的单管器件,在电流为15 A时,输出连续功率16.3 W未出现COD现象,斜率效率达到1.27 W/A,电光转换效率为58%,慢轴发散角9.9°,光谱半高宽为1.81 nm。填充因子为40%的厘米巴条,在192 A下实现连续输出功率180 W,电光转换效率为50.7%,光谱宽度仅为2.2 nm。
  • 图  1  780 nm半导体激光外延的能带结构

    Figure  1.  Energy bands diagram of 780 nm diode laser

    图  2  780 nm半导体激光外延的折射率及光场分布

    Figure  2.  Refractive index and mode distribution diagram of 780 nm diode laser

    图  3  巴条上发光点间深隔离槽SEM照片

    Figure  3.  SEM photo of deep isolation groove between emitters on bar

    图  4  780 nm单管的功率电压效率曲线

    Figure  4.  Optical output power, voltage, and conversion efficiency as function of current of 780 nm single emitter

    图  5  780 nm单管的远场曲线

    Figure  5.  Far field of 780 nm single emitter

    图  6  780 nm激光单管的光谱曲线

    Figure  6.  Spectrum curve of 780 nm single emitter

    图  7  780 nm激光巴条的功率电压效率曲线

    Figure  7.  Optical output power, voltage, and conversion efficiency as function of current of 780 nm diode laser bar

    图  8  780 nm激光巴条的光谱曲线

    Figure  8.  Spectrum curve of 780 nm diode laser bar

    表  1  7xx nm激光单管性能对比

    Table  1.   Performance comparison of 7xx nm diode laser single emitters

    diode laser single
    emitter
    wavelength/nm emitter
    width/μm
    power/W conversion
    efficiency/%
    fast axis
    divergence/(°)
    slow axis
    divergence/(°)
    spectral
    width/nm
    nLight[10] 786 200 10 64 50 (FW1/e2) 10 (FW1/e2) 1.7
    Coherent[11] 793 100 5.6 60.3 / 8.8 (FW95%) /
    Ferdinand-Braun-Institut[5] 780 90 14 (pulse) 45 / / /
    Ferdinand-Braun-Institut[5] 780 1200 60 (pulse) 50 / 13 (FW95%) /
    Raybow Optoelectronics[12] 755 350 12.7 54 37 (FWHM) 8 (FWHM) /
    Institute of Applied Electronics, CAEP[13] 780 100 10.1 54 46 (FW95%) 7 (FW95%) 2.6
    Everbright Photonics[14] 780 150 7 71 39.9 (FWHM) / /
    16.3 60
    this work 780 150 16.3 58 45 (FW95%) 9.9 (FW95%) 1.81
    下载: 导出CSV

    表  2  7xx nm激光巴条性能对比

    Table  2.   Performance comparison of 7xx nm diode laser bars

    diode laser bar wavelength/nm emitter number emitter width/μm power/W conversion efficiency/% spectral width/nm
    DILAS[3] 780 19 150 110 57 2.2
    Ferdinand-Braun-Institut[15] 780 5 / 172 (pulse) 57 /
    this work 780 19 200 180 50.7 2.2
    下载: 导出CSV
  • [1] Keaveney J, Hamlyn W J, Adams C S, et al. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz[J]. Review of Scientific Instruments, 2016, 87: 095111. doi: 10.1063/1.4963230
    [2] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92. doi: 10.1109/JSTQE.2008.2010719
    [3] Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[C]//Proceedings of the SPIE 8241, High-Power Diode Laser Technology and Applications X. 2012: 82410Q.
    [4] Hübner M, Wilkens M, Eppich B, et al. A 1.4kW 780nm pulsed diode laser, high duty cycle, passively side-cooled pump module[J]. Optics Express, 2021, 29(7): 9749-9757. doi: 10.1364/OE.416527
    [5] Crump P, Wilkens M, Hübner M, et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126204.
    [6] Kissel H, Tomm J W, Köhler B, et al. Impact of external optical feedback on high-power diode laser lifetime and failure modes[C]//Proceedings of the SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000S.
    [7] Christopher H, Kovalchuk E V, Wenzel H, et al. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780nm[J]. Applied Optics, 2017, 56(19): 5566-5572. doi: 10.1364/AO.56.005566
    [8] Al-Jabr A A, Majid M A, Alias M S, et al. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing[J]. Journal of Applied Physics, 2016, 119: 135703. doi: 10.1063/1.4945104
    [9] Michaud J, Vecchio P D, BéchouL, et al. Precise facet temperature distribution of high-power laser diodes: unpumped window effect[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1002-1005. doi: 10.1109/LPT.2015.2405090
    [10] Bao L, Wang J, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]//Proceedings of the SPIE 7953, Novel In-Plane Semiconductor Lasers X. 2011: 79531B.
    [11] Liu G L, Lehkonen S, Li J W, et al. High power and reliable 793nm T-bar and single emitter for thulium-doped fiber laser pumping[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126208.
    [12] Hu H M, Zhao Jianyang, Wang Weimin, et al. 12 W high power InGaAsP/AlGaInP 755 nm quantum well laser[J]. Chinese Optics Letters, 2019, 17: 061403. doi: 10.3788/COL201917.061403
    [13] 何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33:091001 doi: 10.11884/HPLPB202133.210099

    He Lin'an, ZhouKun, ZhangLiang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001 doi: 10.11884/HPLPB202133.210099
    [14] Wang Bangguo, Zhou Li, Tan Shaoyang, et al. 71% wall-plug efficiency from 780 nm-emitting laser diode with GaAsP quantum well[J]. Optics & Laser Technology, 2024, 168: 109867.
    [15] Arslan S, MaaßdorfA, Martin D, et al. Progress in high power diode laser pumps for high-energy class mid infra-red lasers[C]//2021 IEEE Photonics Conference (IPC). 2021: 1-2.
    [16] Boschker J E, Spengler U, Ressel P, et al. Stability of ZnSe-passivated laser facets cleaved in air and in ultra-high vacuum[J]. IEEE Photonics Journal, 2022, 14: 1531606.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  192
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-02
  • 修回日期:  2023-10-15
  • 录用日期:  2023-10-15
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回