Analysis of influence of canceling secondary neutron sources ontritium source terms in pressurized water reactors
-
摘要: 在压水堆正常运行期间,氚贡献了压水堆液相流出物总活度的95%以上,是反应堆设计和运行中的关键放射性核素之一。通过对美国在运的8台堆芯设计非常相似的机组2000至2019年期间氚排放数据进行较为深度的数据清洗和分析研究,得出采用不锈钢包壳的Sb-Be次级中子源的氚释放是压水堆机组氚源项的重要来源之一,统计机组中次级中子源产氚贡献平均为7.5 TBq·a−1,结合理论计算,符合当前包壳材料发展和运行管理水平下的渗透比例10%~20%。取消次级中子源约可以降低20%的因氚排放造成的公众剂量,还可以降低氚源项对厂址规划机组数量的制约。此外,研究还发现,氚排放量的显著波动受到液态集中排放的显著影响,特别是在美国压水堆大修之前或期间,这将有助于优化未来机组放射性排放管理。Abstract: During the normal operation of pressurized water reactors, tritium contributes more than 95% of the total activity of liquid phase effluent from pressurized water reactors, and it is one of the key radionuclides in reactor design and operation. Through in-depth data cleaning and analysis of tritium emission data from eight units operating in the United States with very similar core designs from 2000 to 2019, it is concluded that tritium emission from Sb-Be secondary neutron sources using stainless steel cladding is one of the important sources of tritium source terms for pressurized water reactor units. According to statistics, the average contribution of tritium production from secondary neutron sources in the units is 7.5 TBq·a−1, combined with theoretical calculations, The penetration ratio in line with the current cladding material development and operation management level is 10%−20%. The elimination of secondary neutron sources can reduce the public dose caused by tritium emissions by about 20%, and can also reduce the constraints of tritium source terms on the number of units planned for the plant site. In addition, it also found that significant fluctuations in tritium emissions are significantly affected by concentrated liquid emissions, especially before or during the overhaul of pressurized water reactors in the United States, which will help optimize the management of radioactive emissions from future units.
-
Key words:
- tritium /
- secondary neutron source /
- stainless steel cladding /
- pressurized water reactor
-
表 1 压水堆中氚生产的核反应
Table 1. Nuclear reaction of tritium production in PWR
region nuclear reactions fuel $ {\text{U/Pu + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{}}{\text{FP1 + FP2 + }}{}_{\text{1}}^{\text{3}}{\text{H}} $ antimony-beryllium
(in secondary source)${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}}$⇨${}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li}}$⇨${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}}$⇨${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$boric acid
(in the primary coolant and control rod)${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},2\alpha )}}{\text{2}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{2}}^{\text{4}}{\text{He}}$⇨${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
${}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{2}}^{\text{4}}{\text{He}}$⇨${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$${}_{\text{5}}^{{\text{11}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{1}}^{\text{3}}{\text{H}}$⇨${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}}$
${}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{{{ - 1}}}^{\text{0}}{\text{e}}$⇨${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
${}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}}$⇨${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$lithium hydroxide
(in the primary coolant)${}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}}$
${}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n,n}}\alpha )}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}}$deuterium
(in the primary coolant)${}_{\text{1}}^{\text{2}}{\text{H + }}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{({\text{n}},\gamma )}}{}_{\text{1}}^{\text{3}}{\text{H}}$ 表 2 机组信息
Table 2. Information of the reactors
reactor thermal capacity/MW number of assemblies active height/cm fuel configuration secondary neutron source (SNS) period of discharge group 1 A 3411 193 12 17×17 N 2000—2019 B 3411 193 12 17×17 N 2001—2019 C 3438 193 12 17×17 N 2001—2011 D 3438 193 12 17×17 N 2001—2011 group 2 E 3459 193 12 17×17 Y 2001—2019 F 3468 193 12 17×17 Y 2000—2019 G 3455 193 12 17×17 Y 2001—2019 H 3455 193 12 17×17 Y 2001—2019 表 3 氚排放量统计结果
Table 3. Statistical results of tritium emissions
unit average tritium emission/(TBq·a−1) maximum tritium emission/(TBq·a−1) gaseous liquid total gaseous liquid total group 1 A 3.8 18.2 22.0 4.8 32.4 37.1 B 3.0 22.2 25.2 4.8 33.5 38.3 C 2.1 21.5 23.6 2.6 33.8 36.4 D 2.2 22.6 24.8 2.5 34.3 36.8 All 2.8±0.7 21.1±1.7 23.9±1.2 4.8±1.1 34.3±1.6 38.3±1.2 group 2 E 3.9 26.9 30.8 5.4 36.5 44.0 F 3.9 29.3 33.2 4.6 37.7 41.9 G 2.6 28.8 31.4 3.6 39.1 41.9 H 2.5 27.6 30.1 3.2 37.1 38.8 All 3.2±0.7 28.1±0.9 31.4±1.1 5.4±0.8 39.1±1.0 44.0±1.8 -
[1] 上官志洪, 黄彦君, 陶云良, 等. 内陆核电厂排放氚的辐射环境影响评价[J]. 辐射防护, 2012, 32(2):65-71Shangguan Zhihong, Huang Yanjun, Tao Yunliang, et al. Radiological environmental impact assessment for tritium discharged from inland NPPs[J]. Radiation Protection, 2012, 32(2): 65-71 [2] Peterson H T, Baker D A. Tritium production, releases and population doses at nuclear power reactors[J]. Fusion Technology, 1985, 8(2): 2544-2550. [3] 苏耿华, 包鹏飞, 韩嵩. 反应堆二次中子源源强计算及验证[J]. 强激光与粒子束, 2017, 29:036023 doi: 10.11884/HPLPB201729.160186Su Genghua, Bao Pengfei, Han Song. Calculation and verification of secondary neutron source intensity of nuclear reactor[J]. High Power Laser and Particle Beams, 2017, 29: 036023 doi: 10.11884/HPLPB201729.160186 [4] Andrieu C, Ravel S, Ducros G, et al. Release of fission tritium through Zircaloy-4 fuel cladding tubes[J]. Journal of Nuclear Materials, 2005, 347(1/2): 12-19. [5] 付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34:026009 doi: 10.11884/HPLPB202234.210399Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009 doi: 10.11884/HPLPB202234.210399 [6] 杨昭林, 王亮, 周永海, 等. 压水堆核电厂氚排放源项的计算及验证[J]. 核科学与工程, 2020, 40(3):359-366Yang Zhaolin, Wang Liang, Zhou Yonghai, et al. Calculation and verification of tritium release for PWR nuclear power plants[J]. Nuclear Science and Engineering, 2020, 40(3): 359-366 [7] 孔亮. 压水堆换料循环取消次级中子源组件的研究[D]. 上海: 上海交通大学, 2018: 20-29Kong Liang. Study on cancelling secondary source assemblies during refuling cycles[D]. Shanghai: Shanghai Jiao Tong University, 2018: 20-29 [8] Charlier A, Gubel P, Vandenberg C, et al. Experimental study of the tritium inventory in the BR3 and extrapolation to a P.W.R. of 900 MWe[R]. Luxembourg: Commission of the European Communities, 1982. [9] Burns K, Love E, Elmore M. Tritium production in secondary neutron sources in pressurized water reactors[J]. Fusion Science and Technology, 2017, 71(4): 544-548. doi: 10.1080/15361055.2017.1291038 [10] Shaver M W, Lanning D D. Secondary startup neutron sources as a source of tritium in a pressurized water reactor (PWR) reactor coolant system[R]. Richland: Pacific Northwest National Lab. , 2010. [11] IAEA. Power reactor information system (PRIS)[EB/OL]. 2022 [2023-10-19]. https://www.iaea.org/resources/databases/power-reactor-information-system-pris. [12] U. S. NRC. Radioactive effluent and environmental reports[EB/OL]. 2022 [2023-10-19]. https://oriseapps.orau.gov/Effluent/Reports/Common/YearSiteReports. [13] Austin J H, Elleman T S, Verghese K. Surface effects on the diffusion of tritium in 304-stainless steel and zircaloy-2[J]. Journal of Nuclear Materials, 1973, 48(3): 307-316. doi: 10.1016/0022-3115(73)90027-5 [14] Kearns J J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4[J]. Journal of Nuclear Materials, 1967, 22(3): 292-303. doi: 10.1016/0022-3115(67)90047-5 [15] Andrieu C. Étude de la perméation du tritium à travers les gaines de crayons combustibles type R. E. P[D]. Grenoble: Grenoble INPG, 1998. [16] GB 6249-2011, 核动力厂环境辐射防护规定[SGB 6249-2011, Regulations for environmental radiation protection of nuclear power plant[S