留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心脉冲发电机剩磁能量回收方法

张鹏 李海涛 胡长勇 孔令硕

张鹏, 李海涛, 胡长勇, 等. 空心脉冲发电机剩磁能量回收方法[J]. 强激光与粒子束, 2023, 35: 115001. doi: 10.11884/HPLPB202335.230124
引用本文: 张鹏, 李海涛, 胡长勇, 等. 空心脉冲发电机剩磁能量回收方法[J]. 强激光与粒子束, 2023, 35: 115001. doi: 10.11884/HPLPB202335.230124
Zhang Peng, Li Haitao, Hu Changyong, et al. Remanent magnetic energy recovery method for air-core pulse alternator[J]. High Power Laser and Particle Beams, 2023, 35: 115001. doi: 10.11884/HPLPB202335.230124
Citation: Zhang Peng, Li Haitao, Hu Changyong, et al. Remanent magnetic energy recovery method for air-core pulse alternator[J]. High Power Laser and Particle Beams, 2023, 35: 115001. doi: 10.11884/HPLPB202335.230124

空心脉冲发电机剩磁能量回收方法

doi: 10.11884/HPLPB202335.230124
基金项目: 山东省自然科学基金项目(ZR2019QEE018)
详细信息
    作者简介:

    张 鹏,m13852433558@163.com

    通讯作者:

    李海涛,lihaitao840812@163.com

  • 中图分类号: TM301

Remanent magnetic energy recovery method for air-core pulse alternator

  • 摘要: 为了降低空心脉冲发电机的能量损耗与励磁绕组发热,提出了一种具有剩余磁能回收功能的脉冲发电机励磁电路。通过在电容支路设置调节电感,使放电完成后的电容电压反向,迫使晶闸管与二极管关断,以切换电流流通路径来实现剩余励磁能量到电容器中的转移。该电路使用晶闸管作为主开关,电流关断能力强的特点使其在大功率脉冲发电机的应用中具有一定优势。对提出的励磁能量回收电路的工作过程进行了介绍,仿真分析了剩余能量回收对励磁绕组能量损耗和脉冲发电机发热的影响,并对该电路拓扑的工作原理进行了实验验证。结果表明:该电路可以迅速回收励磁绕组中的剩余能量,缩短励磁电流续流时间,减少励磁损耗与能量损耗。仿真与实验结果反映的规律与电路原理一致,表明了该电路方法的可行性。
  • 图  1  传统脉冲发电机拓扑结构

    Figure  1.  Traditional pulse alternator topology

    图  2  具有励磁能量回收的脉冲发电机拓扑

    Figure  2.  Pulse alternator with excitation energy recovery

    图  3  励磁能量回收电路

    Figure  3.  Excitation energy recovery circuit

    图  4  励磁能量回收电路工作过程

    Figure  4.  Working process of excitation energy recovery circuit

    图  5  脉冲发电机2D模型

    Figure  5.  2D model of pulse alternator

    图  6  励磁电流波形

    Figure  6.  Excitation current waveform

    图  7  励磁绕组产热

    Figure  7.  Heat generation of field winding

    图  8  脉冲电容电压

    Figure  8.  Pulse capacitance voltage

    图  9  脉冲发电机温度分布

    Figure  9.  Temperature distribution of pulse alternator

    图  10  脉冲发电机温度分布

    Figure  10.  Temperature curve of pulse alternator

    图  11  实验电路

    Figure  11.  Experimental circuit

    图  12  实验结果

    Figure  12.  Experimental results

    表  1  脉冲发电机仿真参数

    Table  1.   Simulation parameters of pulse alternator

    number of
    pole pairs
    number of
    phases
    rotor speed/
    (r·min−1)
    rotor outer
    diameter/mm
    stator outer
    diameter/mm
    moment of
    inertia/(kg·m2)
    field winding
    inductance/mH
    field winding
    resistance/mΩ
    capacitance of
    capacitor/mF
    initial excitation
    voltage/V
    2 4 12000 540 760 30 4.2 90 3 1000
    下载: 导出CSV

    表  2  电路性能指标

    Table  2.   Circuit performance indices

    circuit mode freewheeling time/ms winding heat/MJ winding temperature/℃
    traditional circuit >20 >0.16 38.6
    energy recovery circuit 6 0.11 34.9
    下载: 导出CSV

    表  3  实验电路参数

    Table  3.   Parameters of experimental circuit

    capacitance of
    capacitor/µF
    voltage of
    capacitor/V
    inductance of regulating
    winding/µH
    resistance of regulating
    winding/mΩ
    inductance of field
    winding/mH
    resistance of field
    winding/mΩ
    100 400 180 20 1.5 320
    下载: 导出CSV
  • [1] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014

    Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014
    [2] 陶雪峰. 空心补偿脉冲发电机励磁与放电控制方法研究[D]. 长沙: 国防科技大学, 2017

    Tao Xuefeng. Research on the excitation and discharge control method of air-core compensated pulsed alternator[D]. Changsha: Graduate School of National University of Defense Technology, 2017
    [3] 叶才勇, 于克训, 刘晓旭, 等. 补偿脉冲发电机电流脉冲成形的分析[J]. 高电压技术, 2008, 34(2):373-376

    Ye Caiyong, Yu Kexun, Liu Xiaoxu, et al. Investigation on the current pulse formation of compulsators[J]. High Voltage Engineering, 2008, 34(2): 373-376
    [4] 陶雪峰, 刘昆. 空心补偿脉冲发电机设计与仿真[J]. 电工技术学报, 2018, 33(9):1931-1937

    Tao Xuefeng, Liu Kun. Design and simulation of an air-core compulsator[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1931-1937
    [5] 陶雪峰, 刘昆. 补偿脉冲发电机放电波形优化方法[J]. 强激光与粒子束, 2018, 30:095001 doi: 10.11884/HPLPB201830.170325

    Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30: 095001 doi: 10.11884/HPLPB201830.170325
    [6] Ye Caiyong, Yu Kexun, Lou Zhenxiu, et al. Investigation of self-excitation and discharge processes in an air-core pulsed alternator[J]. IEEE Transactions on Magnetics, 2010, 46(1): 150-154. doi: 10.1109/TMAG.2009.2030182
    [7] Yu Kexun, Duan Huijie, Xie Xianfei. The electromagnetic and thermal analysis of an air-core pulsed alternator driving the railgun[C]//Proceedings of the 22nd International Conference on Electrical Machines and Systems. 2019.
    [8] Yu Kexun, Zhu Hanting, Xie Xianfei, et al. Loss analysis of air-core pulsed alternator driving an ideal electromagnetic railgun[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1589-1599. doi: 10.1109/TTE.2021.3051630
    [9] 吴伏家, 东潘龙. 20MJ补偿脉冲发电机的设计与仿真[J]. 现代电子技术, 2014, 37(2):149-152 doi: 10.3969/j.issn.1004-373X.2014.02.041

    Wu Fujia, Dong Panlong. Design and simulation of 20 MJ compulsator[J]. Modern Electronics Technique, 2014, 37(2): 149-152 doi: 10.3969/j.issn.1004-373X.2014.02.041
    [10] 张丰伟. 空芯脉冲发电机电源系统分析与控制研究[D]. 武汉: 华中科技大学, 2017

    Zhang Fengwei. The analysis and control of a pulsed power supply system based on an air-core alternator[D]. Wuhan: Huazhong University of Science and Technology, 2017
    [11] 赵伟铎, 崔淑梅, 刘庆, 等. 空心补偿脉冲发电机温度场计算与分析[J]. 中国电机工程学报, 2011, 31(27):95-101 doi: 10.13334/j.0258-8013.pcsee.2011.27.013

    Zhao Weiduo, Cui Shumei, Liu Qing, et al. Thermal field calculation and analysis of an air-core compulsator[J]. Proceedings of the CSEE, 2011, 31(27): 95-101 doi: 10.13334/j.0258-8013.pcsee.2011.27.013
    [12] Cui Shumei, Zhao Weiduo, Wu Shaopeng. Research on the thermal field and active water cooling system design of an air-core compulsator[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 257-262. doi: 10.1109/TPS.2010.2056938
    [13] 李海涛, 刘剑, 赵博, 等. 一种可回收剩余励磁能量的他励空心脉冲发电机励磁电路: 113315427A[P]. 2021-08-27

    Li Haitao, Liu Jian, Zhao Bo, et al. A separately excited air-core pulse alternator excitation circuit capable of recovering residual excitation energy: 113315427A[P]. 2021-08-27
    [14] 孙鹞鸿, 李文超, 付荣耀, 等. 一种用于他励脉冲发电机励磁能量回收的并励串收式拓扑结构: CN115085348A[P]. 2022-09-20

    Xun Yaohong, Li Wenchao, Fu Rongyao, et al. A shunt-excited series-received topology for the recovery of excitation energy of separately excited pulse generators: CN115085348A[P]. 2022-09-20
    [15] Li Xiyuan, Song Liwei, Cui Shumei. Energy reclaim control of an air-core pulsed alternator[C]//Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. 2015.
    [16] Li Xiyuan, Cui Shumei, Song Liwei. Impact factors for energy reclamation control of an air-core pulsed alternator[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 0606805.
    [17] Ding Jianmin, Xie Xianfei, Yu Kenxun. Energy recovery of air-core pulsed alternators after discharge process[C]//Proceedings of 2021 IEEE 4th International Electrical and Energy Conference. 2021.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  55
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-09-13
  • 录用日期:  2023-08-25
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回